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COSIN
COevolution and Self-organisation In 

dynamical Networks

http://www.cosin.org

• Nodes 6 in 5 countries
• Period of Activity: April 2002-April 2005
• Budget: 1.256 M€
• Persons financed: 8-10 researchers
• Human resources: 371.5 Persons/months

FET Open scheme RTD Shared Cost Contract IST-2001-33555

EU countries

Non EU countries

EU COSIN participant

Non EU COSIN participant
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•The graph size is the number of its vertices. 
•The graph measure is the number of its edges. 
•The degree of a vertex in a graph is the number of edges that connects it to 
other vertices. 
•In the case of an oriented graph the degree can be distinguished in in-degree
and out-degree.
•Whenever all the vertices share the same degree the graph is called regular. 
•A series of consecutive edges forms a path.

oThe number of edges in a path is called the length of the path. 
oA Hamiltonian path is a path that passes once through all the vertices (not 
necessarily through all the edges) in the graph.
oA Hamiltonian cycle is a Hamiltonian path which begins and ends in the 
same vertex. 
oAn Eulerian path is a path that passes once through all the edges (not 
necessarily once through all the vertices) in the graph. 
oAn Eulerian cycle is an Eulerian path which begins and ends in the same 
edge.

•2 Boring stuff (1/3)
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• A graph is connected if a path exists for any couple of vertices in the graph.
• A graph with no cycles is a forest. A tree is a connected forest.
• The distance between two vertices is the shortest number of edges one needs to 

travel to get from one vertex to the other.
• Therefore the neighbours of a vertex are all the vertices which are connected to that 

vertex by a single edge.
• A dominating set for a graph is a set of vertices whose neighbours, along with 

themselves, constitute all the vertices in the graph.
• A graph with size n cannot have a measure larger than mmax = n(n-1)/2. When all 

these possible edges are present the graph is complete and it is indicated with the 
symbol Kn.

• The opposite case happens when there are no edges at all. The measure is 0 and the 
graph is then empty and it is indicated by the symbol En.

• The diameter D of a graph is the longest distance you can find between two vertices 
in the graph.

• A complete bipartite clique Ki,j is a graph where every one of i nodes has an edge 
directed to each of the j nodes.

• The clustering coefficient C is a rougher characterization of clustering with respect 
to the clique distribution. C is given by the average fraction of pair of neighbours of 
a node that are also neighbours each other. For an empty graph En C=0 everywhere. 
For a complete graph Kn, C=1 everywhere.

• A bipartite core Ci,j is a graph on i+j nodes that contains at least one Ki,j as a 
subgraph.

•2 Boring stuff (3/3)
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Router connections at small level produce a complex Internet structure.

•2A Internet
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gcalda@pil.phys.uniroma1.it> traceroute www.louvre.fr

1  141.108.1.115   Rome pcpil
2  141.108.5.4     Unknown
3  193.206.131.13  Unknown rc-infnrmi.rm.garr.net
4  193.206.134.161 Unknown rt-rc-1.rm.garr.net 
5  193.206.134.17  Unknown mi-rm-1.garr.net
6  212.1.196.25  South Cambridgesh garr.it.ten-155.net
7  212.1.192.37 South Cambridgesh ch-it.ch.ten-155.net
8  212.1.194.14  Genève geneva5.ch.eqip.net
9  195.206.65.105  Genève geneva1.ch.eqip.net

10   0.0.0.0      Unknown No Response
11  193.251.150.30  Unknown p6.genar2.geneva.opentransit.net
12  193.251.154.97  PARIS, FR  p43.bagbb1.paris.opentransit.net

Previous maps have been computed through extensive collection of traceroutes

•2A Internet
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Results are that we can quantify the 
hierarchical nature of the AS connections

P(A) ∝ A-2

Plot of the C(A) show the same
optimisation of the Food webs

C(A) ∝ A

•2A Internet
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•2A Internet

•Measure Forward IP Paths
skitter records each hop from a source to many destinations. by
incrementing the "time to live" (TTL) of each IP packet header and 
recording replies from each router (or hop) leading to the destination host. 
•Measure Round Trip Time
skitter collects round trip time (RTT) along with path (hop) data. skitter uses
ICMP echo requests as probes to a list of IP destinations. 
•Track Persistent Routing Changes
skitter data can provide indications of low-frequency persistent routing
changes. Correlations between RTT and time of day may reveal a change in 
either forward or reverse path routing. 
•Visualize Network Connectivity
By probing the paths to many destinations IP addresses spread throughout
the IPv4 address space, skitter data can be used to visualize the directed
graph from a source to much of the Internet. 

skitter is a tool for actively probing the Internet in order to analyze topology and performance.

http://www.caida.org/tools/measurements/skitter
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•2A Internet
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This happens at both domain and router server

•P(k) = probability that a node has k links

Faloutsos et al. (1999)

•2A Internet
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Internet maps measurements
•CAIDA
•NLANR
•Mercator project
•IPM 
•Bell lab.s
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•2A Internet

Vazquez Pastor-Satorras and Vespignani
PRE 65 066130  (2002)
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•2A Internet
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•2A Internet
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Nodes: (static) HTML pages
Edges (directed): hyperlinks beetween pages

•2B World Wide Web
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Why are we interested in the WebGraph?

From link analysis: 
• Data mining (ex: PageRank)
• Sociology of content creation
• Detection of communities
With a “good” WebGraph model:
• Prove formal properties of algorithms
• Detect peculiar region of the WebGraph
• Predict evolution of new phenomena

•2B World Wide Web
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Models for the WebGraph:

• Random Graph (Erdös, Renyi)

• Evolving networks (Albert, Barabasi, Jeong)

• “Copying” models (Kumar, Raghavan,…)

• ACL for massive graph (Aiello, Chung, Lu)

• Small World (Watts, Strogats)

• Fitness (Caldarelli, Capocci, De Los Rios, 
Munoz)

M lti L (C ld lli D L Ri L

•2B World Wide Web
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Albert Barabasi Emergence of scaling in random networks
Kumar et al. , Stochastic models for the WebGraph
Broder et al. , Graph structure in the web

•2B World Wide Web
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•Bow-tie structure

•Small World for the 
SCC and the weakly
connected components

Broder et al. , Graph structure in the web

•2B World Wide Web
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• Explicit (or “self-aware”) communities:
1. Webrings
2. Newsgroup users
3. Gnutella, Morpheus, etc.. users
• Implicit communities:
1. Fan-Center Bipartite Cores

Cyber Communities

Kumar et al. , Crawling the Web for Emerging Cyber Communities

•2B World Wide Web
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Dill et al. , Self-similarity in the web

• TUC - Thematically Unified Cluster, for example:
1. By content
2. By location
3. By geographical location
…and…
4. Random collection of websites
5. Hostgraph

Fractal properties

•2B World Wide Web
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Probably the most complex system is
human behaviour!
Even by considering only the trading 
between individuals, situation seem to
be incredibly complicated.

“A Prototype Model of Stock Exchange” 
Europhysics Letters, 40 479 (1997),  G. C., M. Marsili, Y.-C. Zhang.

Econophysics tries to understand the 
basic “active ingredients” at the basis of 
some peculiar behaviours.
For example price statistical properties 
can be described through a simple
model of agents trading the same stock. 

•2C Economics and Finance
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Some of the phenomena in finance can be described by means of graphs

• Stock price correlations
•J.-P. Onnela, A. Chackraborti, K. Kaski, J. Kertész, A. Kanto

http://xxx.lanl.gov/abs/cond-mat/0303579 and  http://xxx.lanl.gov/abs/cond-mat/0302546
•G. Bonanno, G. Caldarelli, F. Lillo and R. N. Mantegna

http://xxx.lanl.gov/abs/cond-mat/0211546
•Portfolio composition

•D. Garlaschelli, S. Battiston, M. Castri, V. D. P. Servedio, G. Caldarelli 
http://xxx.lanl.gov/abs/cond-mat/0310503

•Board of Directors
•M. E. J. Newman, S. H. Strogatz and D. J. Watts, 

Phys. Rev. E 64, 026118 (2001). 
•S. Battiston, E. Bonabeau and G. Weisbuch

http://xxx.lanl.gov/abs/cond-mat/0209590 (2002). 
Through this new description we can

•Discover new features
•Validate Models

•2C Economics and Finance
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Logarithmic return of stock i

Correlation between returns
(averaged on trading days)

Distance between stocks i, j

A tree (a graph with no cycle) can be constructed by imposing that the 
sum of the (N-1) distances is the minimum one. 

•2C Stock Correlations
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Correlation based minimal spanning trees of real data from daily stock returns of 1071 stocks for the 12-year period 
1987-1998 (3030 trading days). The node colour is based on Standard Industrial Classification system. 
The correspondence is:

red for mining cyan for construction yellow for manufacturing
green for transportation, communications, light blue for public 
electric,gas and sanitary services administration magenta for wholesale trade
black for retail trade purple for finance and insurance orange for service industries

“Topology of correlation based..” http://xxx.lanl.gov/abs/cond-mat/0211546
G. Bonanno, G. C. , F. Lillo, R. Mantegna.

Real Data from NYSE

•2C Stock correlation
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Correlation based minimal spanning trees of of an artificial market composed by of 1071 stocks according to 
the one factor model. 
The node colour is based on Standard Industrial Classification system.  The correspondence is:

red for mining cyan for construction yellow for manufacturing
green for transportation, communications, light blue for public 
electric,gas and sanitary services administration magenta for wholesale trade
black for retail trade purple for finance and insurance orange for service industries

Data from Capital Asset Pricing Model

In the model it is supposed that returns follow

)()()( ttrtr iMiii εβα ++=

ri(t)  = return of stock i
rM(t) = return of market (Standard & Poor’s)
αi,βi = real parameters
εi,     = noise term with 0 mean

•2C Stock correlation
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Without going in much detail about degree distribution or clustering of the two graphs

We can conclude that: 

the topology of MST for the real and an artificial market are greatly different.

Real market properties are not reproduced by simple random models

•2C Stock correlation
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Investors or Companies not traded at Borsa di Milano (Italy)

Companies traded at Borsa di Milano (Italy)

•2C Portfolio Composition
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•2C Portfolio Composition
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•2C Portfolio Composition
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•2C Portfolio Composition
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•2C Portfolio Composition
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It is not only the topology that matters.

In this case as in many other graphs the weight of the link is crucial
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For every stock i you compute this quantity.
The sum runs over the different holders 
• If there is one dominating holder SI tends to one
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For every guy j you compute this quantity.
The sum at the denominator runs over the different holders of i
Then you sum on the different stocks in the portfolio
This gives a measure of the number of stocks controlled

•2C Portfolio Composition
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•2C Stock correlation
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FOOD CHAIN = sequence of predation relations among different living species sharing the 
same physical space (Elton, 1927):

Flow of matter and energy from prey to predator, in more and more complex forms;

The species ultimately feed on the abiotic environment (light, water, chemicals);

At each predation, almost 10% of the resources are transferred from prey to
predator.

•2D Food Webs
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A series of different interconnected food chains form a food web

•2D Food Webs
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Trophic Level of a species:
Minimum number of predations separating it from the environment.

Set of species sharing the same set of preys and the same set of predators (food web →
aggregated food web).

Trophic Species:

Top Species:  

Basal Species:
Species with no prey (B)

Intermediate Species:
Species with both prey and predators ( I )

Species with no predators (T)

Prey/Predator Ratio =
TI
IB

+
+

•2D Food Webs
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How to characterize the topology of Food Webs?

Graph Theory

↓

Pamlico Estuary (North
Carolina): 
14 species

↓

Aggregated Food Web of     Little Rock Lake
(Wisconsin)*:

182 species → 93 trophic species

* See Neo Martinez Group at http://userwww.sfsu.edu/~webhead/lrl.html•2D Food Webs



Troisieme Cycle Suisse Romande 
Stat. Mech. of Networks-

42

irregular
or scale-
free?

P(k)∼ k-γ

Unaggregated versions of real webs:

R.V. Solé, J.M. Montoya Proc. Royal Society Series B 268 2039 (2001)

J.M. Montoya, R.V. Solé, Journal of Theor. Biology 214 405 (2002)

•2D Food Webs: Degree Distribution



Troisieme Cycle Suisse Romande 
Stat. Mech. of Networks-

43

Aggregated versions of real webs:

Same qualitative behaviour of their unaggregated counterparts.

We look for other quantities!.

•2D Food Webs: Degree Distribution
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A spanning tree of a connected directed graph is any of its connected directed subtrees
with the same number of vertices.

In general, the same graph can have more spanning trees with different
topologies.

•2D Food Webs: Spanning Trees of a Directed Graph
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St.Martin’s Island (Antilles):

44 species → 42 trophic species
224 links → 211 trophic links
(low taxonomic resolution)

Ythan Estuary (Scotland):

134 species → 123 trophic species
597 links → 576 trophic links
(taxonomic resolution : 88%)

Silwood Park (United Kingdom):

154 species → 83 trophic species
365 links → 215 trophic links
(taxonomic resolution : 100%)

Little Rock Lake (Wisconsin):

182 species → 93 trophic species
2494 links → 1046 trophic links
(taxonomic resolution : 31%)

Spanning Tree:

All edges directed from level
l1 to levels l2 ≤ l1 are removed

•2D Food Webs Spanning Trees from data
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•2D Protein Interactions

Network of Interaction for the protein of Baker’s Yeast (Saccharomyces Cerevisiae)
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A. Vazquez et al., ComPlexUs 1, 38-44 (2003)

How do growth and preferential attachment
apply to protein networks?

• Growth: genes (that encode proteins) can be, 
sometimes, duplicated; mutations change 
some of the interactions with respect 
to the parent protein

• Preferential attachment: the probability that a protein
acquires a new connection is related to the 
probability that one of its neighbors is 
duplicated; proportional to its connectivity

•2D Origin of Protein Networks
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•2D Two-hybrid method

The two hybrid method way of detecting protein interactions
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•2D More refined Models

• The real network is random

• The detection method sees 
only pairs with large enough 
binding constants

• The binding constant is related 
to the solubilities of the two 
proteins

• Solubilities are given 
according to some distribution

With the solvation free energies taken from an exponential probability 
distribution p(f) = e-f, we obtain   

P(k) ~ k-2
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← Scale-Free Degree distribution

Scale-Free Betweenness b(k) →

•2D Protein Interactions
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Clustering per degree c(k) →

← neighbors degree per degree Knn(k)

•2D Protein Interactions


