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*3A Food Webs (1)

Species and their predation relationships

form a very peculiar hierarchical graph.

. -
level 3 o q .
(@) eClesSs.
P =P Little Rock Lake (Wisconsin)
i.e. no predators .
188 species
level 2

Intermediate Species:
i.e. both predators and prey

level 1

Basal Species:
No prey

External Resources

Pamlico Esthuary (North Carolina)
14 species
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°3A Food Webs (2

A spanning tree of a connected directed graph is any of its
connected directed subtrees with the same number of vertices.

!

In general, the same graph can have more spanning trees
with different topologies.
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°3A Tree Topolo R]

Sum of the sizes:

Cx = Z‘?Y

Yey(X

Out-component size:

A, = ZWXYAY +1
Yenn(X)

Allometric relations:

Out-component size
Cx:Cx(Ax) = C:C(A)

distribution P(A):

0.6 35
, ¢ 33
0s P(A) 50 | CA)
0,51
25
0,4 1 * 22
20
0,3 4
15 A
0,2 1 10 4 * 11
0,1 0,1 0,1 0,1 0,1
0,1 1 5 *5
*3
0 HH H : H HA of—=1 : : : : A
1 2 3 4 5 6 7 8 9 10 0 2 4 6 8 10 12
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* 3A Allometric Relations (4)

A,: metabolic rate B
C,: blood volume ~M

m- Elaphant

: o -
100 ™ @ |
% Dog- c.‘:.qm'n'nman
AR Bt =
= Chickean «® Cad
: 1_’.:“. 3 Kleiber’s Law:
h: B(M) o M*"
1 A . . 4
K ' g = —
oo o ! Bodjlir:ljassﬂk:;[} e C(A) * A 77 - 3

General Case (tree-like transportation system
embedded in a D-dimensional metric space):
D +1

the most efficient scaling is C(A)x A" n
D

West, G. B., Brown, J. H. & Enquist, B. J. Science 284, 1677-1679 (1999)
Banavar, J. R., Maritan, A. & Rinaldo, A. Nature 399, 130-132 (1999). |

Troisieme Cycle Suisse Romande
Stat. Mech. of Networks-



 3A Food Webs (3)

o >>1 0<o <1 o —0
N % I/\
'\\.//5 '\./v '\.
@ )
O V
O O
~\/ 7 \./v '\.
C(A)x A C(A)xc A7 1<n<2 C(A) o A?
efficient inefficient
P(A)=4,, P(A)c A" 0<7< P(A) = cost
stable unstable
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 3A Food Webs (6)

Results in this field are that the spanning tree of the Food web show

Some sort of optimization in resources transfer.
For this case the most efficient tree should behave like C(A) oc A

]n‘ A | L Wbl HRRRLL: | Frrro L WAL | LLRLE. | o g FT LIALLLL |
E i ‘b 1 FC 1 Fd
10° L ? i 4t 1k /;
' = 4 b 4 F 2
; S=42 | | S=48 | © S=81
n=1.16 | [ n=1.16 7 | ] n=1.13
c=0.12 1 }| c=010 1 t c=0.02 ¢=0.03
0+ o 1\
f 119 . ]
b4 I 4 [
10° £ i F 1 F E
10 L o 5 4107 b
: S=81 1 F S=93 S=123 '
n=1.13 | "f# n=1.13 ¢ n=1.13 | -
c=0.04 c=0.12 ¢=0.06 n=1.13 .
mlﬁ 10 |& 10°10° ﬁ' 107 10°10° ﬁ' 10’ w10 i&

(D.Garlaschelli, G.

Caldarelli, L.

Pietronero Nature 423 165 (2003))
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Law of steepest descent produces the complex Network structure
of rivers drainage basins.
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FracTAL RIVER BASINS

River Networks study the interplay between
Fluvial erosion and Landscape Evolution

This interplay produces “UNIVERSAL” non
trivial properties.

LI Illl:l‘llll-ll'll“‘llllll 1L ] ]

The first quantitative measure of that universality was introduced by
Hack who studied the shape of the basins.

In particular the Drainage Basins for any River on Earth display similar
Fractal Properties

We investigate the statistical properties of such basins and map these
Properties with the above interplay.

A possible application presented is trying to infer the presence of erosion
From drainage basins of other planet (Mars).
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Some phenomenological facts are at the basis of the River Network Theory

.

In river basins one can consider precipitation of water as nearly constant.
Therefore the mass of water collected in the outlet is proportional to the area of
the basin A..

Water follows the steepest descent path (Ah,)

The erosion of water modifies the landscape and can cause terrain instability.
Empirically, the stable landscape are those for which

Ah; A< constant
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3B Shape of Landscapes (4)

Satellite image of
Himalaya
Courtesy of NASA
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From satellite images one gets Digital Elevation Models (DEM)
From DEM a spanning tree is computed (via steepest descent)
From spanning tree, the number of points uphill is computed

156.4| 132.4 | 1114 ——p
170.8| 161.3 | 108.2
182.4 | 154.5 106.0 — )
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3B Real Drainage Basin (6)

. Drainage Basin of Fella river
el ey tributary of Tagliamento,
L Northern Italy

. rn |
G : Rk 4 2
A Zigm &
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Basin of Ngaruroro River, New Zealand

- i :; *\'@‘t‘"
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.3B Real Drainage Basin (8 Larger view of the previous subbasin
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International River Basins of
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International River Basins of
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This self-affinity results in power-law distributions of
-Number of points uphill
-Stream lengths
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3B Statistical Measures (11)

Different frequency distributions can be computed

*Frequency distribution P(n) to have n points uphill
For real rivers P(n) ~ n~ f(n/L%) 1=1.43(1)

*Frequency distribution I

I(1) to have upstreams of length 1

For real rivers I

I(1) ~ It g(/L) y=1.7(1)

ALL THESE QUANTITIES ARE RELATED TO h!
One can describe networks by considering the P(n) only

Troisieme Cycle Suisse Romande 23
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3B Scaling relations (12)

For self-affine river networks

Ab~L, (h>0.5) 1
L,~L", (H<1) } h= 1+H

1+2H 1 1

1+H " i+H ¢=1+H

T

In particular, H=0.72, h= 0.58, 7 = 1.42, y= 0.58, ¢ = 0.58

A.Maritan et al., Physical Review E 53, 1510 (1996)
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3B Computer Simulations (13)

Computer simulations of a Self-Organised Critical model reproduce the data

Can one applies these results to other cases?
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Data on Mars topography were collected through
the Mars Orbiter Laser Altimeter (MOLA)

T TAL I RS S T L MR G K AT R A @ -
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3B Martian Landscape (15)

Computer Analysis
of Warego Valley
DEM from MOLA

Results are that we can distinguish regions whose DEM networks have
properties similar to River Networks on Earth.

o]

T
PR © Do pits
5l e c"}jb o with pits | .
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Log A
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*3C Taxonomical Trees (1)

Set of all living organisms and environmental properties of

Ecosystem = a restricted geographic area

— we focus our attention on plants

— in order to obtain a good universality of the results we have
chosen a great variety of climatic environments

Troisieme Cycle Suisse Romande 28
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*3C Taxonomical Trees (2)

. e phylum
Phylogenetic Tree = hierarchical structure organized on different l
levels, called taxonomic levels, representing: I subphylum
o classification and identification of different plants I class
e history of the evolution of different species I subclass
l I order
; o family
A phylogenetic tree already has |
the topological structure of a tree graph I genus
s ® species
B
o 28 1 % “@ 7 “8 e each node in the graph represents a different taxa
8;9 NNV 727 jﬁf%:é' ) (specie, genus, family, and so on). All nodes are
Fa AN Y7 Tl organized on levels representing the taxonomic one
.2 309_9:5-9% & @0 Sy @._..g%.. s
s e —]
G AT _ _
N g A e ¢ all link are up-down directed and each one
N\ (N2 A\ e ,gg represents the belonging of a taxon to the relative
S AN ;'ﬂ* T aatacee upper level taxon
:@° s eeﬁ’:w eeeeﬁs%s’e@g" eeé_%"@e N\ :’a?e;“
<=2 7 O MNNNNN Connected graph without loops or
%'%é:é; 3'::@%°§boge:% e"“"°°g:f::° A%L
U AR — double-linked nodes
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*3C Scale-free trees (3

Degree distribution:

100¢ lDGGD:||||| TTTTT | |||||| |||||: :l TTTT T TTTT | T TTIT | |||||: :||||| T TTIT | T TTIT | |||||:
o w00 s Lazio 3 L AtAcamA ] [ UTAH ]
IDD_— " _ I -'- _] - - ]
a = = = L 5 = " 5
= . — \‘ - - k‘ -
o — — - — - ]
= ] 5 = | 3 = et 5
— - — — — — - —
o1 L1iu AT BRI AT IEETTE BT Ll L 1w Ll L1 L]
o 0
=
Qﬂ 100€ lDOOD:||||| TTTTT | |||||| |||||: :| TTTT T TTTT | T TTIT | |||||: :||||| | T TTIT | T TTIT | |||||:
O IRAN ] - ARGENTINA _] - AMAZONIA ]
o PUE T . = .
100 — — — — - ]
Lt E 3 E = 3 = - 3
10 [~ 4 = ~ - -
= 3 = LI 3 = e, 3
=~ - - — - —
PR ENERTTE BRI BTN BT Covn v b ovow I C oo v Do b
0 0.1 1 10 100 1000 0.1 | 10 1 0 100D 0.1 1 10 100 IR
0.1 1 10 100 1 O 0.1 | 10 10D 100D 0.1 | 10 1O0 1000

m—)> P(k)oc k™7 y~25+0.2
The best results for the exponent value are given by ecosystems
with greater number of species. For smaller networks its value can
increase reaching y=2.8 - 2.9.
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*3C Geographical Species subset (4)

2 | | 2 | =f [ E
QNu:rou ; ; Qﬂ Loog) ; ; Q~ 100 [~ ] é ]
E ) E ; E e b E * ™, E

10:— \\ j - 10:— :l\l": j ‘ ‘
0: I1 e 1|0 = ll|>0 117100 ”1;000 0'10.:||||| I1 — 1‘0 IH”lllJollllllu!oo‘Hul;ooo 0\7“”“ ‘ | ‘ E 7"”" o Lo L | m:

k k 0.1 1 10 100 1000 10000 0.l 1 10 100 1000 10000
k
— + = +
Troisieme Cycle Suisse Romande 31

Stat. Mech. of Networks-



*3C Random subsets (3)

In spite of some slight difference in the exponent value, a subset which represents on its own
a geographical unit of living organisms still show a power-law in the connectivity distribution.

::> random extraction of 100, 200 and 400 species between those belonging
to the big ecosystems and reconstruction of the phylogenetic tree

1000
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T w T - Ll L L | Il C 1 L L 1
k k k
1000 77 T 1000 1 I
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*3C Memor

Particular rule to put a species in a genus, a genus in a family....? NO!

6

:> P(kfk) that a genus with degree k, belongs to a family with degree k,

Pk, k,)

u k— Ji o kf 3 (k7) 2: ( ‘)
= k =2 k =4 .
fixed
Plkk)eck,” T
fixed S i
y~22%0.2 [ :
K

> P(ko,kf) that a family with degree kf belongs to an order with degree &,

P(k, k)

0.01

1L

l 10 100
ky

mf=1

1B k,=2

fixed

m k=3
m i =4
ijﬂkykg)ock¥'7 Egm
1.8+£0.2

~~
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*3C A simple model (7)

create N species to build up an ecosystem

Group the different species in genus, the genus in families, then families
in orders and so on realizing a phylogenetic tree

- Each species is represented by a string with 40 characters representing 40
properties which identify the single species (genes);

- Each character is chosen between 94 possibilities: all the characters and symbols
that in the ASCII code are associated to numbers from 33 to 126:

PIg|HIC]) |%o|r |? |L|8le|s|/ |Clc W&|I |y 4! [t |G]] [42£]) k|, |'|d|lgq]|2]=[m: |f |V

/

.zAB. Two species are grouped in the same genus according
to the extended Hamming distance d,,,:
s kY cl; = character of species /  with i=/,.......... ,40
A y c2; = character of species 2 with i=/,.......... ,40
mm— gy = (Lim140 I€1;- €2, )/40
", o Troisieme Cycle Suisse Romande 34
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*3C A simple model (8)
cl,

Plg |H|C]|) [%]o |r |? |L
Gli |4l2le]D |k, |! |d
c2, species /
dey <C —> same genus

Fixed threshold species 2

genus = average of all species belonging to it

cl,
Plg/HIC|) [%o|r |?|L c(g),
I = (el +c2)2 wm |
Glj [4/2£)]) k|, [']|d
c2,

e Same proceedings at all levels with a fixed threshold for each one

e At the last level (8) same phylum for all species (source node)
35
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*3C New species (9

/ No correlation: species randomly created with no
relationship between them
~ Genetic correlation: species are no more independent but

descend from the same ancestor

e No correlation:

= ecosystems of 3000 species
i = each character of each string is chosen
i at random
= quite big distance between two different
species:

1000

gy~ 20

< (S.]'|Ud ~j|<@al~Nf KMgXw % : ¥ 4"|j|°|zZlG9/|Fly 2] 'R_x5>

= (Y0,~ 17202 Yyouom~3-0£0.2)

0.1 Lol 1 |||||{|u L1 ””ﬂl]n L1 ||||1|6|DD [ TI‘OiSieme Cycle Suisse Romande 36
Stat. Mech. of Networks-

=
o
—



*3C New species (9

= single species ancestor of all species in the ecosystem

= at each time step f a new species appear:

- chose (randomly) one of the species already present in the ecosystem
- change one of its character

= 3000 time steps

natural selection

=P [Fnvironment = average of all species present in the

1000

0.1 1 IIIIIII| 1 IIIIIII| 1 IIIIIII| 1 IIIIIII| 1 1

0.1 1 10 100

k

1000

the ecosystem at each time step 7.

= At each time step 7 we calculate the distance between
the environment and each species:

dEH < Csel > survival
dEH > Csel > extinction

= small distance between different species:

()~ 0.5
d5d ["[&ly[ZEJ[[I [RA([XZ G?|g=Xmida/ [Xr[1TKd?[6Y/[GAQz

g 50 _|"|&y|=Eo[|:|RA(|x]z/G?|0=/|%wW |S/ I Xr|]1TIKg? 6KNQz
Pk) ~ k7 y~2.8 0.2

Troisieme Cycle Suisse Romande 37
Stat. Mech. of Networks-




*3C A comparison (10)

Not Correlated:

Correlated:

1

[T IIIIIII| [ IIIIIII| [ IIIIIII| I TTTTTIT 17T T ||||||||
1000 — . = 1000 |—
- . - -
— n ] B
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= . < L
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*3C Conclusions (11)

Results: -« universality (same statistical properties for ecosystems with
different number of species and climatic environment) and

scale-free properties
= comparison between geographical and random subsets:

evidence of the existence of a correlation between species in
a same ecosystem due to some self-organizing properties

» simple model presented shows the importance of a
genetic correlation

Future: = model presented is only a beginning: improvement with
particular attention to environment and natural selection

= new data and chinese box ecosystem

= prevent correlated plants extinction due to human

Applications:  nfluence

= plant ecosystems structure and reafforestation
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Standard Theory of Random Graph
*3D Models (1 (Erdés and Rényi 1960)

P(k) oo ! .‘ “'.

Random Graphs are composed by starting with N vertices. Degrees are Poisson distributed

k
With probability p two vertices are connected by an edge P(k) = e PN (p;(\'f )

Model of Growing Networks

1) Growth (Barabasi 1999)

Every time step new nodes enter the system - ol N\
2) Preferential Attachment

0

The probability to be connected depends on the ° .

degree P(k) c k | - h
O/ 10" :
o 10° 10 % 10° 10'
=T Degrees are Power law distributed
/O ll
O o\'ﬁ P(k)oc k™
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3D Models (2

Exploration algorithm (P. De Los Rios, T. Petermann)

Starting from a highly connected node,
we move along each of its links with probability
p: if a link is lost, it is lost forever.

We iterate the procedure from every reached
node, and so on until there are no further links
to explore.

We then consider the network of the explored
links and nodes as the "measured” network.

Troisieme Cycle Suisse Romande 41
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3D Models (3

Exploration of a BA model
Every link is explored with probability p=0.5

The true exponent
is 3...
the “measured” e
exponent is 2.5 =l
k
Troisieme Cycle Suisse Romande 42
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3D Models (4

An analytical derivation I

We use the |lack of correlations in BA networks:
a node of degree k can be connected with nodes of any
other degree (i.e. of any possible age).

So, we can reformulate the exploration problem as a
process evolving in parallel to the growth of the network.

1. Start from m, nodes, all of them “detected”

2. Add a new node, and connect it to one of the existing
nodes with preferential attachment

3. This new node is “detected” if it connects to a “detected”
node AND if the connection is explored (with probability p)

4. Repeat from 2. till completion

Troisieme Cycle Suisse Romande 43
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3D Models (5

An analytical derivation 11

The total number N(t) of “"detected” nodes
at time t evolves according to the rate eq.

NG _ f dN(t V(o)

dt 2t

Probability to connect
to a node born at
time t’

Density of detected
nodes at time t
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3D Models (1)

An analytical derivation I11

We assume that N(t) grows algebraically
= dN(t)/dt ~ t=

We remember that k(t’,t) = (t/t")/?

Plugging everything in the rate equation we
obtain

a=(p-1)/2
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3D Models (6

An analytical derivation IV — and last

We use the usual relation P(k)dk = dft,
but now we modify it to P(k)dk = dN(t),
to obtain

P(k) ~ k(2+p)
p=0.5 implies P(k) ~ k=2->

Message: imperfect exploration changes
the exponent!
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