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Technological data: Internet,
WWW

Social data: Finance and Board
of Directors

Biological data: Proteins

Part4 [1-12-2003

MODELS
Random Graphs (Erdos-Renyi)
Small world
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More is different !

P.W. Anderson, Science 177 393-396 (1972)

squantitatively larger systems are qualitatively different

Emergence of Complexity could be related to

1) Microscopical interactions




1A (2) Complexity

Networks represent an important example of Complex Structures
Through simple microscopical interaction
Complex Structures develop long range correlations.

Very different systems can be described through Graph Topology
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1A (3) Complexity




1A (4) Complexity

Atoms do not show the electrical features of macroscopic materials.
Complex rearrangement of electrons in cristals determine these new properties
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1A (5) Complexity




1B (1) The Fractal Geometry of Nature

Mathematicians provided the concept of Fractal Dimension




1B (2) Deterministic Fractals

The Cantor Set is the dust of points This is already the limit of
obtained as the limit of this succession succession of iterations

of segments
|




1B (3) Natural Fractals

More generally, Fractals are standard phenomena in Nature,
in this case their nature is intrinsically stochastic and not deterministic.
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1B (4) Natural Fractals

Another way to measure fractal dimension
is through mass-length relation
M, «R,» M,xR,?

Troisieme Cycle Suisse Romande
Stat. Mech. of Networks-

13



*1B (5) Example Let us consider an ordinary A4 sheet.

A4 format corresponds to 0.210 m X 0.297 m
Good quality printing paper weighs 80g/m?
This means that one A4 weighs 0.297*0.21*%80 g =4.9896 ¢

Now fold an A4 sheet 0f4.9896g 1oe . — . e
Then fold i , ]
eone half of A4 (M=2.4948 g) . 1 A
eone fourth of A4 (M=1.2474 g) I ' 4
= i
it
O | Lim
0 | 10

R=radius (cm)



1) Data collection (self-affinity in space and/or time)
Coast lines, fractures, electrical breakdown, (invasion) percolation, price
fluctuations, river networks, galaxy distribution, avalanches

2) Modelling
DLA (Diffusion Limited Aggregation)
DBM (Dieletric Breakdown Model)
IP (Invasion Percolation)
Sandpiles Models
BS (Bak and Sneppen model)
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1B (7) Fractal Structures in Nature




1B (8) Fractal Structures in Nature




*1B (9) Fractal Structures in Nature
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1B (10) Fractal Structures in Nature
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1B (11) Fractal Structures in Nature
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1B (13) Fractal Structures in Nature
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Different Wildfires

a)
b)
c)
d)

Valley of Biferno (I)
Penteli (Greece)
Cuenca (Spain)

A computer model
(percolation)




1B (14) Models of Fractal Growth

DLA Diffusion Limited Aggregation:

a random walker travels on a limited portion of the
Euclidean space. In this region a “seed” is present, when
the walker “touches” the seed the walker stops, sticks on the
seed and a new walker starts on the region boundaries.

T.A. Witten, L. M. Sander PRL 47, 1400 (1981).

DBM Dielectric Breakdown Model:
A dielectic material modelled by a regular lattice is kept
under constant Electric Field. Step by step sites in the




1B (15) Models of Fractal Growth

Percolation:
In a lattice we switch on with probability p the various sites.
A i
If p=1 all the sites are on

Interesting situation for 0<p<I LR R I




*1C (1) Self-Organization

Consider a pile of sand on a table

If the slope is very large a little
perturbation matters



*1C (2) Self-Organization

This process of self-organization
is based on this feedback.
The critical state attracts the dynamics

Sand Addition
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BTW Sandpile Model:

On a regular lattice, grains of sands are added on the sites of
the lattice. When a critical threshold of grains is reached,
the site topples on the neighbours triggering other topplings

to form a macroscopic avalanche.
P. Bak, C. Tang, K. Weisenfeld PRL 52, 1033 (1984).

BS Bak and Sneppen Model:

An ecosystem of species is model through a system of
species 1 characterized by a fitness n.. Recursively the
species with the minimum fitness and its neighbours are




*1C (4) Self-Organized Criticality

BTW and BS are critical in the sense of
scale-free dynamics.

The spatial cluster are compact
But the size of the avalanches
(measure of the burs of activity)
are power-law




The presence of scale invariance was already
noticed in the framework of critical phenomena

In certain conditions physical systems can abruptly
change their macroscopic behaviour when
Temperature or Pressure are smoothly varied

1. Discontinuous transitions
When away from the critical point there is
one phase whose properties are continuously
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Typically close to a critical point, for a
continuous transition
most of the interesting quantities as specific heat, correlation length exhibit power-law

scaling with respect to the distance from critical point (T-T,)

"By defining t = (T-T)/T, and h = H/Kk, T,

o The specific heat in zero field Coc Alt] @
B The spontaneous magnetization limy o Moc-th
v The zero field susceptibility y=(0M/ 0H)|y_, oc -t ¥

0 At T=Tc the magnetisation versus h M oc hl/®




*1C (7) Self-similarity, Critical Phenomena, Renormalization Group




The concept of scale invariance is used in the idea of the Renormalization Group
ISING MODEL  F{({s})=-J 2; .. s;8;
As 1n the example of the Ising model, we can start from a lattice of spins.
We replace (decimation) every three spin with a block spin
We then change (rescaling) the lattice constant.
The new system 1s now indistinguishable from the old.
In order to have the same Hamiltonian we need to find the J* invariant under
this transformation. From the condition on this parameter we can find an
analytical way to compute the critical exponents.




1D (1) Fractals and networks

These Complex structures

extend the concepts of S\ V) 7,
Self-similarity S N Z s
from Metric Objects (Fractals) =0\
to Shape (Networks). N Ay
7 4l -
i




1D (2) Evidence of scale freedom in networks
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1D (3) Evidence of scale freedom in networks
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a) WWW b) Actors
¢) Physicists d) Neuroscientists




There is also another non trivial property owned by most of the networks:
They are much more “connected” than expected. Let’s see why:

UNITED STATES OF AMERICA
POLITICAL-GEOGRAPHIC SUB-DIVISIONS

i S :_:

Is it possible to deliver a message to a Stock dealer in
starting from unrelated people in









*1E (1) Basic Graph Theory

Is it possible to travel from one part of

the city of Konigsberg to any other
PASSING ALL THE BRIDGES ON THE
PREGEL ONLY ONCE ?




1736
All vertices have odd
degree! — No way




*1E (3) Graph Definitions

A Graph G(v,e) is an object
composed by v vertices and e edges

Edges can be oriented —
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P(k)oc k™7

No structure
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‘4 Centrality betweenness b(k) = The probability that a vertex whose degree is k
has betweenness b

betweenness of I is the number of distances
between any pair of vertices passing <
through I

‘S TREES ONLY!!! P(A) = Probability Density for subbranches of size A




*1E (6) Boring stuff (1/3)

eThe graph size is the number of its vertices.
eThe graph measure is the number of its edges.
oeThe degree of a vertex in a graph is the number of edges that connects it to
other vertices.
eIn the case of an oriented graph the degree can be distinguished in in-degree
and out-degree.
eWhenever all the vertices share the same degree the graph is called regular.
e A series of consecutive edges forms a path.
oThe number of edges in a path is called the length of the path.
oA Hamiltonian path is a path that passes once through all the vertices (not

necessarily through all the edges) in the graph.
oA Hamiltonian cycle is a Hamiltonian path which begins and ends in the




*1E (6) Boring stuff (2/3

eWhenever all the vertices share the same degree the graph is called regular.

oA series of consecutive edges forms a path.
oThe number of edges in a path is called the length of the path.
oA Hamiltonian path is a path that passes once through all the vertices (not
necessarily through all the edges) in the graph.
oA Hamiltonian cycle is a Hamiltonian path which begins and ends in the
same vertex.
oAn Eulerian path is a path that passes once through all the edges (not
necessarily once through all the vertices) in the graph.
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*1E (7) Boring stuft (3/3)

« A graph is connected if a path exists for any couple of vertices in the graph.
» A graph with no cycles is a forest. A tree is a connected forest.

» The distance between two vertices is the shortest number of edges one needs to
travel to get from one vertex to the other.

» Therefore the neighbours of a vertex are all the vertices which are connected to that
vertex by a single edge.

« A dominating set for a graph is a set of vertices whose neighbours, along with
themselves, constitute all the vertices in the graph.

» A graph with size n cannot have a measure larger than mmax = n(n-1)/2. When all
these possible edges are present the graph is complete and it is indicated with the
symbol Kn.

* The opposite case happens when there are no edges at all. The measure is 0 and the
graph is then empty and it is indicated by the symbol En.

» The diameter D of a graph is the longest distance you can find between two vertices
in the graph.




