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COSIN
COevolution and Self-organisation In 

dynamical Networks

http://www.cosin.org

• Nodes 6 in 5 countries
• Period of Activity: April 2002-April 2005
• Budget: 1.256 M€
• Persons financed: 8-10 researchers
• Human resources: 371.5 Persons/months

FET Open scheme RTD Shared Cost Contract IST-2001-33555

EU countries

Non EU countries

EU COSIN participant

Non EU COSIN participant
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More is different !

•quantitatively larger systems are qualitatively different

P.W. Anderson, Science 177 393-396 (1972)

Emergence of Complexity could be related to

1) Microscopical interactions

2) Co-evolution

3) Self-Organisation

•1A What is Complexity (for a physicist!)?
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Networks represent an important example of Complex Structures
Through simple microscopical interaction

Complex Structures develop long range correlations.

Very different systems can be described through Graph Topology

River Networks Food Webs Internet

•1A (2) Complexity
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Router connections at small level produce a complex Internet structure.

•1A (3) Complexity
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Atoms do not show the electrical features of macroscopic materials.
Complex rearrangement of electrons in cristals determine these new properties

•1A (4) Complexity
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Law of steepest descent produces the complex Network structure
of rivers drainage basins.

•1A (5) Complexity
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Mathematicians provided the concept of Fractal Dimension

The object obtained in the limit has “dimension” less than 2, in particular

585.1
)2ln(
)3ln(

)/1ln(
)(lnlim 0 ≈== → ε

ε
ε

ND

Where N(ε) is the number of triangles of linear size ε
needed to cover the structure

•1B (1) The Fractal Geometry of Nature

N(ε) = (1/ε)D
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N(ε) = 2k where k is the iteration
And ε =(1/3)k

D=ln(2)/ln(3) = 0.6309…

N(ε) = 8k where k is the iteration
And ε =(1/3)k

D=ln(8)/ln(3) = 1.8927…

The Cantor Set is the dust of points
obtained as the limit of this succession

of segments

This is already the limit of 
succession of iterations

•1B (2) Deterministic Fractals
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•1B (3) Natural Fractals
More generally, Fractals are standard phenomena in Nature, 

in this case their nature is intrinsically stochastic and not deterministic.
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Another way to measure fractal dimension
is through mass-length relation 

M1 ∝R1
D     M2∝R2

D 

•1B (4) Natural Fractals
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•1B (5) Example Let us consider an ordinary A4 sheet. 
A4 format corresponds to 0.210 m X 0.297 m
Good quality printing paper weighs 80g/m2

This means that one A4 weighs 0.297*0.21*80 g = 4.9896 g

Now fold an A4 sheet of 4.9896 g
Then fold 
•one half of     A4 (M=2.4948 g)
•one fourth of A4 (M=1.2474 g)
• …..
Measure the radius of the objects.

M (g)R (cm)

0.311851.0 ± 0.1 

0.62371.35 ± 0.2 

1.24741.75 ± 0.2 

2.49482.2 ± 0.2

4.98963.0 ± 0.25
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1) Data collection (self-affinity in space and/or time)
Coast lines, fractures, electrical breakdown, (invasion) percolation, price 
fluctuations, river networks, galaxy distribution, avalanches

2) Modelling
DLA (Diffusion Limited Aggregation)
DBM (Dieletric Breakdown Model)
IP (Invasion Percolation)
Sandpiles Models
BS (Bak and Sneppen model)

3) General Theory
Still lacking but good candidates:
Laplacian Fractals (Interplay between diffusion and disorder)
Self-Organised Criticality (Dynamics of the system keeps it in a self-similar state)

•1B (6) State of the art in Fractal Theory
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•1B (7) Fractal Structures in Nature 

River Networks (Earth and Mars)
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•1B (8) Fractal Structures in Nature 

Electrical Discharge in dielectric, data and simulations



Troisieme Cycle Suisse Romande 
Stat. Mech. of Networks-

18

•1B (9) Fractal Structures in Nature 

1104 Dome of Anagni (Italy) Viscous fingering (Lenormand)
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•1B (10) Fractal Structures in Nature 

Olivine and MnO Shock Waves (meteorite) Cracks (speres and clay)
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•1B (11) Fractal Structures in Nature 

Cauliflowers, Blood vessels, Ferns
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•1B (12) Fractal Structures in Nature 

Electrochemical deposition
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•1B (13) Fractal Structures in Nature 

Different Wildfires

a) Valley of Biferno (I)
b) Penteli (Greece)
c) Cuenca (Spain)
d) A computer model

(percolation)
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•1B (14) Models of Fractal Growth

DLA Diffusion Limited Aggregation: 
a random walker travels on a limited portion of the 
Euclidean space.  In this region a “seed” is present, when
the walker “touches” the seed the walker stops, sticks on the 
seed and a new walker starts on the region boundaries.
T.A. Witten, L. M. Sander PRL  47, 1400 (1981).

DBM Dielectric Breakdown Model: 
A dielectic material modelled by a regular lattice is kept
under constant Electric Field. Step by step sites in the 
dielectric are removed with a probability proportional to the 
electrostatic difference of potential they see.
L. Niemeyer, L. Pietronero, H.J. Wiesman PRL  52, 1033 (1984).

In both cases the physics of the problem is given by Laplacian operator.

DBM ∇2 φ = 0 → φi = ¼ Σ <ji> φj

DLA Pi = ¼ Σ <ji> Pj
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•1B (15) Models of Fractal Growth

Percolation: 
In a lattice we switch on with probability p the various sites.
If p=0 no site is on.
If p=1 all the sites are on
Interesting situation for 0<p<1 

By tuning the value of p we pass from little isolated
cluster to a large one that spans all the system. 
It can be shown that when p=pc the cluster is fractal

D. Stauffer Introduction to Percolation Theory Springer (Berlin).
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•1C (1) Self-Organization

Consider a pile of sand on a table

If the slope is very large a little  
perturbation matters

An avalanche starts towards the 
edges of the system

In most case there is no characteristic size for the avalanches
P(S) ∝ S−τ
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This process of self-organization
is based on this feedback.

The critical state attracts the dynamics

•1C (2) Self-Organization

More generally one can justify the ubiquity
of fractals whenever

the dynamics evolves in a scale-free state
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•1C (3) Models of Self-Organized Criticality

BTW Sandpile Model: 
On a regular lattice, grains of sands are added on the sites of 
the lattice. When a critical threshold of grains is reached, 
the site topples on the neighbours triggering other topplings 
to form a macroscopic avalanche.
P. Bak, C. Tang, K. Weisenfeld PRL 52, 1033 (1984).

BS Bak and Sneppen Model: 
An ecosystem of species is model through a system of 
species i characterized by a fitness ηi. Recursively the 
species with the minimum fitness and its neighbours are 
removed and changed with three new ones with random ηi 
P. Bak, K. Sneppen PRL 71, 4083 (1993). 

IP Invasion Percolation:
A fluid (water) is injected in a porous medium to extract oil. 
Amongst the different channels on the boundaries the one with 
the minimum diameter is selected to be invaded.
D. Wilkinson and J. F. Willemsen, J. Phys. A London 16, 3365 (1983).
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•1C (4) Self-Organized Criticality

BTW and BS are critical in the sense of
scale-free dynamics.

The spatial cluster are compact
But the size of the avalanches

(measure of the burs of activity)
are power-law
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•1C (5) Self-similarity, Critical Phenomena, Renormalization Group

The presence of scale invariance was already
noticed in the framework of critical phenomena

1. Discontinuous transitions
When away from the critical point there is
one phase whose properties are continuously
connnected to one of the phase in the 
transition, generally the correlation length
remains finite (Melting of 3d solid, 
condensation of gas in liquid)

2. Continuous transitions
The two phases must become identical and
generally the correlation lengths diverges
(Curie Temperature in a Ferromagnet, liquid-
gas critical point)

In certain conditions physical systems can abruptly
change their macroscopic behaviour when
Temperature or Pressure are smoothly varied
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By defining t ≡ (T-Tc)/Tc and h ≡ H/kbTc

α The specific heat in zero field C ∝ A|t| -α
β The spontaneous magnetization limH→0 M ∝ - t β
γ  The zero field susceptibility χ≡(∂Μ/ ∂Η)|Η=0 ∝ -t –γ

δ  At T=Tc the magnetisation versus h                                   M ∝ h1/δ

η  The Correlation Function G(r) G(r) ∝ 1/rd-2+η

ν  The correlation length ξ ξ ∝ |t|−ν

z  The typical relaxation time τ τ ∝ ξz

Typically close to a critical point, for a 
continuous transition
most of the interesting quantities as specific heat, correlation length exhibit power-law 
scaling with respect to the distance from critical point (T-Tc)

In a liquid H=(p-pc), M=(ρ-ρc). The role χ is played by the isothermal compressibility κτ

•1C (6) Self-similarity, Critical Phenomena, Renormalization Group
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•1C (7) Self-similarity, Critical Phenomena, Renormalization Group

Size of Domains in Ising model 
at critical state

Domains at percolation thresholds
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•1C (8) Self-similarity, Critical Phenomena, Renormalization Group

The concept of scale invariance is used in the idea of the Renormalization Group
ISING MODEL   H({si})= -J Σ<i,j> sisj
As in the example of the Ising model, we can start from a lattice of spins. 
We replace (decimation) every three spin with a block spin
We then change (rescaling)  the lattice constant. 
The new system is now indistinguishable from the old. 
In order to have the same Hamiltonian we need to find the J* invariant under 
this transformation. From the condition on this parameter we can find an
analytical way to compute the critical exponents. 
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These Complex structures
extend the concepts of  

Self-similarity  
from Metric Objects (Fractals) 

to Shape (Networks).

Fractal Dimension is defined Fractal Dimension is NOT defined

Similarly to Fractals, one finds self-similar properties in “some” distributions.
THE MOST NOTICEABLE IS THE NUMBER OF LINK PER SITE

•1D (1) Fractals and networks
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•1D (2) Evidence of scale freedom in networks

Different Traceroute maps
Of Internet
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•1D (3) Evidence of scale freedom in networks

Protein Interaction Map
Saccaromyces Cerevisiae

Property network
In NYSE
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b) Actors
d) Neuroscientists

a) WWW
c) Physicists

•1D (4) Evidence of scale freedom in networks
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•1D (5) The Milgram Experiment (1967)

Is it possible to deliver a message to a Stock dealer in Chicago
starting from unrelated people in Nebraska?

There is also another non trivial property owned by most of the networks:
They are much more “connected” than expected. Let’s see why:
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•1D (6) The Small World Effect

On average less than
6 passages!!

SIX DEGREES OF SEPARATION
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•1D (7) The structure of social networks

According to Mark Granovetter “weak links” work as shortcuts
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Is it possible to travel from one part of
the city of Königsberg to any other
PASSING ALL THE BRIDGES ON THE
PREGEL ONLY ONCE ?

NO!

Euler (1736) pointed out that to be a “passage” 
point a vertex must have an even number of links.
Only starting and ending points can have an odd
number of links.
THIS IS NOT THE CASE FOR KÖNIGSBERG

•1E (1) Basic Graph Theory
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1736
All vertices have odd
degree! → No way

2003
Only B and C have odd
degree! → we can do it! 

•1E (2) Is the problem time dependent?
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· Degree k (In-degree kin and out-degree kout ) = number of edges (oriented) per vertex

A Graph G(v,e) is an object
composed by v vertices and e edges

Edges can be oriented →

· Distance d = number of edges amongst two vertices ( in the connected region !)
· Diameter D = Maximum of the distances ( in the connected region !)
· Clustering = cliques distribution, or clustering coefficient

•1E (3) Graph Definitions
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·1 Degree frequency density P(k) = how many times you find a vertex whose degree is k 

P(k)

k

!
)()(

k
pNekP

k
pN−= γ−∝ kkP )(

·2 Degree Correlation Knn (k) = average degree of a neighbour of a vertex with degree k 

·3 Clustering Coefficient (k) = the average value of c for a vertex whose degree is k 

•1E (4) Statistical measures
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·4 Centrality betweenness b(k) = The probability that a vertex whose degree is k 
has betweenness b

·5 TREES ONLY!!!  P(A) = Probability Density for subbranches of size A
1
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•1E (5) Statistical measures
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•The graph size is the number of its vertices. 
•The graph measure is the number of its edges. 
•The degree of a vertex in a graph is the number of edges that connects it to 
other vertices. 
•In the case of an oriented graph the degree can be distinguished in in-degree
and out-degree.
•Whenever all the vertices share the same degree the graph is called regular. 
•A series of consecutive edges forms a path.

oThe number of edges in a path is called the length of the path. 
oA Hamiltonian path is a path that passes once through all the vertices (not 
necessarily through all the edges) in the graph.
oA Hamiltonian cycle is a Hamiltonian path which begins and ends in the 
same vertex. 
oAn Eulerian path is a path that passes once through all the edges (not 
necessarily once through all the vertices) in the graph. 
oAn Eulerian cycle is an Eulerian path which begins and ends in the same 
edge.

•1E (6) Boring stuff (1/3)
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•Whenever all the vertices share the same degree the graph is called regular. 
•A series of consecutive edges forms a path.

oThe number of edges in a path is called the length of the path. 
oA Hamiltonian path is a path that passes once through all the vertices (not 
necessarily through all the edges) in the graph.
oA Hamiltonian cycle is a Hamiltonian path which begins and ends in the 
same vertex. 
oAn Eulerian path is a path that passes once through all the edges (not 
necessarily once through all the vertices) in the graph. 
oAn Eulerian cycle is an Eulerian path which begins and ends in the same 
edge.

•1E (6) Boring stuff (2/3)
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• A graph is connected if a path exists for any couple of vertices in the graph.
• A graph with no cycles is a forest. A tree is a connected forest.
• The distance between two vertices is the shortest number of edges one needs to 

travel to get from one vertex to the other.
• Therefore the neighbours of a vertex are all the vertices which are connected to that 

vertex by a single edge.
• A dominating set for a graph is a set of vertices whose neighbours, along with 

themselves, constitute all the vertices in the graph.
• A graph with size n cannot have a measure larger than mmax = n(n-1)/2. When all 

these possible edges are present the graph is complete and it is indicated with the 
symbol Kn.

• The opposite case happens when there are no edges at all. The measure is 0 and the 
graph is then empty and it is indicated by the symbol En.

• The diameter D of a graph is the longest distance you can find between two vertices 
in the graph.

• A complete bipartite clique Ki,j is a graph where every one of i nodes has an edge 
directed to each of the j nodes.

• The clustering coefficient C is a rougher characterization of clustering with respect 
to the clique distribution. C is given by the average fraction of pair of neighbours of 
a node that are also neighbours each other. For an empty graph En C=0 everywhere. 
For a complete graph Kn, C=1 everywhere.

• A bipartite core Ci,j is a graph on i+j nodes that contains at least one Ki,j as a 
subgraph.

•1E (7) Boring stuff (3/3)


