Statistical Mechanics of Networks

TROISIEME CYCLE DE PHYSIQUE EN LA SUISSE ROMANDE

Guido Caldarelli

Together with
C.Caretta, M. Catanzaro, F. Colaiori, D. Garlaschelli, L. Pietronero, V. Servedio INFM and Dipartimento di Fisica, Università "La Sapienza" Roma, Italy
L. Laura, S. Leonardi, S. Millozzi, A. Marchetti-Spaccamela
Dipartimento di Sistemistica e Elettronica, Università "La Sapienza" Roma Italy P. De Los Rios ${ }^{\text {a }}$, G. Bianconi ${ }^{\text {b }}$, A. Capocci ${ }^{\text {b }}$
${ }^{a}$ Université de Lausanne, ${ }^{\text {b Université de Fribourg, Switzerland }}$ S. Battiston, A. Vespignani

Ecole Normale Supériéure and Université de Paris Sud, Paris France

- Contents

Part 1 20-11-2003 BASICS

A. Networks as complex structures (9)
B. Fractals, Self-similarity (11)
C. Self-organization (8)
D. Data of scale-free networks (5)
E. Basic of Graphs (8)

Part 3 4-12-2003
 REAL TREES

A. Geophysical data: the River Networks
B. Biological data: Taxonomy and Food Webs
C. Community Structures

Part 2 27-11-2003
REAL GRAPHS
A. Technological data: Internet (10)
B. Technological data : WWW (7)
C. Social data: Finance (13)
D. Biological data: Food Webs and Proteins

Part 4 11-12-2003
MODELS
A. Random Graphs (Erdös-Renyi)
B. Small world
C. Preferential attachment
D. Fitness models

COSIN

COevolution and Self-organisation In dynamical Networks

FET Open scheme RTD Shared Cost Contract IST-2001-33555

http://www.cosin.org

- Nodes
- Period of Activity:
- Budget:
- Persons financed:
- Human resources:

6 in 5 countries
April 2002-April 2005
$1.256 \mathrm{M} €$
8-10 researchers
371.5 Persons/months

EU countries
Non EU countries
EU COSIN participant
Non EU COSIN participant

-2 Boring stuff (1/3)

-The graph size is the number of its vertices.
-The graph measure is the number of its edges.
-The degree of a vertex in a graph is the number of edges that connects it to other vertices.
-In the case of an oriented graph the degree can be distinguished in in-degree and out-degree.
-Whenever all the vertices share the same degree the graph is called regular.

- A series of consecutive edges forms a path.
oThe number of edges in a path is called the length of the path.
oA Hamiltonian path is a path that passes once through all the vertices (not necessarily through all the edges) in the graph.
oA Hamiltonian cycle is a Hamiltonian path which begins and ends in the same vertex.
oAn Eulerian path is a path that passes once through all the edges (not necessarily once through all the vertices) in the graph.
oAn Eulerian cycle is an Eulerian path which begins and ends in the same edge.

- 2 Boring stuff (2/3)

-Whenever all the vertices share the same degree the graph is called regular.
-A series of consecutive edges forms a path.
oThe number of edges in a path is called the length of the path.
oA Hamiltonian path is a path that passes once through all the vertices (not necessarily through all the edges) in the graph.
oA Hamiltonian cycle is a Hamiltonian path which begins and ends in the same vertex.
oAn Eulerian path is a path that passes once through all the edges (not necessarily once through all the vertices) in the graph.
oAn Eulerian cycle is an Eulerian path which begins and ends in the same edge.

-2 Boring stuff (3/3)

- A graph is connected if a path exists for any couple of vertices in the graph.
- A graph with no cycles is a forest. A tree is a connected forest.
- The distance between two vertices is the shortest number of edges one needs to travel to get from one vertex to the other.
- Therefore the neighbours of a vertex are all the vertices which are connected to that vertex by a single edge.
- A dominating set for a graph is a set of vertices whose neighbours, along with themselves, constitute all the vertices in the graph.
- A graph with size n cannot have a measure larger than $\max =n(n-1) / 2$. When all these possible edges are present the graph is complete and it is indicated with the symbol $K n$.
- The opposite case happens when there are no edges at all. The measure is 0 and the graph is then empty and it is indicated by the symbol En.
- The diameter D of a graph is the longest distance you can find between two vertices in the graph.
- A complete bipartite clique $K i, j$ is a graph where every one of i nodes has an edge directed to each of the j nodes.
- The clustering coefficient C is a rougher characterization of clustering with respect to the clique distribution. C is given by the average fraction of pair of neighbours of a node that are also neighbours each other. For an empty graph En $C=0$ everywhere. For a complete graph $K n, C=1$ everywhere.
- A bipartite core $C i, j$ is a graph on $i+j$ nodes that contains at least one $K i, j$ as a subgraph.

-2A Internet

Router connections at small level produce a complex Internet structure.

-2A Internet

Previous maps have been computed through extensive collection of traceroutes
gcalda@pil.phys.uniroma1.it> traceroute www.louvre.fr

1 141.108.1.115 Rome pcpil
2 141.108.5.4 Unknown
3 193.206.131.13 Unknown rc-infnrmi.rm.garr.net
4 193.206.134.161 Unknown rt-rc-1.rm.garr.net
5 193.206.134.17 Unknown mi-rm-1.garr.net
6 212.1.196.25 South Cambridgesh garr.it.ten-155.net
7 212.1.192.37 South Cambridgesh ch-it.ch.ten-155.net
8 212.1.194.14 Genève
9 195.206.65.105 Genève geneval.ch.eqip.net
10 0.0.0.0 Unknown No Response

11 193.251.150.30 Unknown p6.genar2.geneva.opentransit.net
12 193.251.154.97 PARIS, FR p43.bagbbl.paris.opentransit.net

-2A Internet

Results are that we can quantify the hierarchical nature of the AS connections

$$
\mathrm{P}(\mathrm{~A}) \propto \mathrm{A}^{-2}
$$

Plot of the $C(A)$ show the same optimisation of the Food webs

$$
\mathrm{C}(\mathrm{~A}) \propto \mathrm{A}
$$

-2A Internet

skitter is a tool for actively probing the Internet in order to analyze topology and performance.

-Measure Forward IP Paths

skitter records each hop from a source to many destinations. by incrementing the "time to live" (TTL) of each IP packet header and recording replies from each router (or hop) leading to the destination host.

- Measure Round Trip Time
skitter collects round trip time (RTT) along with path (hop) data. skitter uses ICMP echo requests as probes to a list of IP destinations.
-Track Persistent Routing Changes
skitter data can provide indications of low-frequency persistent routing changes. Correlations between RTT and time of day may reveal a change in either forward or reverse path routing.
- Visualize Network Connectivity

By probing the paths to many destinations IP addresses spread throughout the IPv4 address space, skitter data can be used to visualize the directed graph from a source to much of the Internet.

-2A Internet

-2A Internet

This happens at both domain and router server

- $P(k)=$ probability that a node has k links

las-ebone(3215)
las-telianetse(3301)
bbn/gte(1)
diges(2548)
lebone(3269)
Ijanet(786)
Imci(3561)
Isprint(1239)
uunet(701)

-2A Internet

Vazquez Pastor-Satorras and Vespignani PRE 65066130 (2002)

TABLE I. Total number of new ($N_{\text {new }}$) and deleted ($N_{\text {del }}$) nodes in the years 1997, 1998, and 1999. We also report the number of deleted nodes with connectivity $k>10$.

Year	1997	1998	1999
$N_{\text {new }}$	309	1990	3410
$N_{\text {del }}$	129	887	1713
$N_{\text {del }}(k>10)$	0	14	68

TABLE II. Average properties of the Internet for three different years. N, number of nodes; E, number of connections; $\langle k\rangle$, average connectivity; $\langle c\rangle$, average clustering coefficient; $\langle\ell\rangle$, average path length; $\langle b\rangle$, average betweenness. Figures in parentheses indicate the statistical uncertainty from averaging the values of the corresponding months in each year.

Year	1997	1998	1999
N	3112	3834	5287
E	5450	6990	10100
$\langle k\rangle$	$3.5(1)$	$3.6(1)$	$3.8(1)$
$\langle c\rangle$	$0.18(3)$	$0.21(3)$	$0.24(3)$
$\langle\ell\rangle$	$3.8(1)$	$3.8(1)$	$3.7(1)$
$\langle b\rangle / N$	$2.4(1)$	$2.3(1)$	$2.2(1)$

-2A Internet

Troisieme Cycle Suisse Romande

-2A Internet

Troisieme Cycle Suisse Romande

-2B World Wide Web

Nodes: (static) HTML pages

Edges (directed): hyperlinks beetween pages

-2B World Wide Web

Why are we interested in the WebGraph?

From link analysis:

- Data mining (ex: PageRank)
- Sociology of content creation
- Detection of communities

With a "good" WebGraph model:

- Prove formal properties of algorithms
- Detect peculiar region of the WebGraph
- Predict evolution of new phenomena

-2B World Wide Web

Models for the WebGraph:

- Random Graph (Erdös, Renyi)
- Evolving networks (Albert, Barabasi, Jeong)
- "Copying" models (Kumar, Raghavan,...)
- ACL for massive graph (Aiello, Chung, Lu)
- Small World (Watts, Strogats)
- Fitness (Caldarelli, Capocci, De Los Rios, Munoz)
- Multi-Layer (Caldarelli, De Los Rios, Laura, Leonardi)

-2B World Wide Web

Albert Barabasi Emergence of scaling in random networks
Kumar et al., Stochastic models for the WebGraph
Broder et al., Graph structure in the web

-2B World Wide Web

-Bow-tie structure

- Small World for the SCC and the weakly connected components

Broder et al. , Graph structure in the web

-2B World Wide Web

Cyber Communities

- Explicit (or "self-aware") communities:

1. Webrings
2. Newsgroup users

3. Gnutella, Morpheus, etc.. users

- Implicit communities:

1. Fan-Center Bipartite Cores

Kumar et al., Crawling the Web for Emerging Cyber Communities

-2B World Wide Web

Fractal properties

- TUC - Thematically Unified Cluster, for example:

1. By content
2. By location
3. By geographical location
...and...
4. Random collection of websites
5. Hostgraph

Dill et al., Self-similarity in the web

-2C Economics and Finance

Probably the most complex system is human behaviour!
Even by considering only the trading between individuals, situation seem to be incredibly complicated.

Econophysics tries to understand the basic "active ingredients" at the basis of some peculiar behaviours.
For example price statistical properties can be described through a simple model of agents trading the same stock.
"A Prototype Model of Stock Exchange"
Europhysics Letters, 40479 (1997), G. C., M. Marsili, Y.-C. Zhang.

-2C Economics and Finance

Some of the phenomena in finance can be described by means of graphs

- Stock price correlations
-J.-P. Onnela, A. Chackraborti, K. Kaski, J. Kertész, A. Kanto
http://xxx.lanl.gov/abs/cond-mat/0303579 and http://xxx.lanl.gov/abs/cond-mat/0302546
-G. Bonanno, G. Caldarelli, F. Lillo and R. N. Mantegna
http://xxx.lanl.gov/abs/cond-mat/0211546
- Portfolio composition
-D. Garlaschelli, S. Battiston, M. Castri, V. D. P. Servedio, G. Caldarelli http://xxx.lanl.gov/abs/cond-mat/0310503
- Board of Directors
-M. E. J. Newman, S. H. Strogatz and D. J. Watts, Phys. Rev. E 64, 026118 (2001).
-S. Battiston, E. Bonabeau and G. Weisbuch
http://xxx.lanl.gov/abs/cond-mat/0209590 (2002).
Through this new description we can
-Discover new features
-Validate Models

-2C Stock Correlations

$$
\begin{aligned}
r_{i}(\tau) & =\ln P_{i}(\tau)-\ln P_{i}(\tau-1) \\
\rho_{i, j} & =\frac{\left\langle r_{i} r_{j}\right\rangle-\left\langle r_{i}\right\rangle\left\langle r_{j}\right\rangle}{\sqrt{\left\langle\left\langle r_{j}^{2}\right\rangle-\left\langle r_{j}\right\rangle^{2}\right)\left\langle\left\langle r_{i}^{2}\right\rangle-\left\langle r_{i}\right\rangle^{2}\right)}} \\
d_{i, j} & =\sqrt{2\left(1-\rho_{i, j}\right)}
\end{aligned}
$$

Logarithmic return of stock \boldsymbol{i}

Correlation between returns (averaged on trading days)

Distance between stocks $\boldsymbol{i}, \boldsymbol{j}$

A tree (a graph with no cycle) can be constructed by imposing that the sum of the ($\mathrm{N}-1$) distances is the minimum one.

-2C Stock correlation

Real Data from NYSE

Correlation based minimal spanning trees of real data from daily stock returns of 1071 stocks for the 12 -year period 1987-1998 (3030 trading days). The node colour is based on Standard Industrial Classification system.
The correspondence is:
yellow for manufacturing
green for transportation, communications, light blue for public
electric,gas and sanitary services administration
black for retail trade
"Topology of correlation based.." http://xxx.lanl.gov/abs/cond-mat/0211546
G. Bonanno, G. C. , F. Lillo, R. Mantegna.

Troisieme Cycle Suisse Romande
Stat. Mech. of Networks-

-2C Stock correlation

Data from Capital Asset Pricing Model

In the model it is supposed that returns follow

$$
r_{i}(t)=\alpha_{i}+\beta_{i} r_{M}(t)+\varepsilon_{i}(t)
$$

$r_{i}(t)=$ return of stock i
$r_{M}(t)=$ return of market (Standard \& Poor's)
$\alpha_{i}, \beta_{i}=$ real parameters
$\varepsilon_{i}, \quad=$ noise term with 0 mean

Correlation based minimal spanning trees of of an artificial market composed by of 1071 stocks according to the one factor model.
The node colour is based on Standard Industrial Classification system. The correspondence is:
yellow for manufacturing
green for transportation, communications, light blue for public
electric,gas and sanitary services administration
black for retail trade

-2C Stock correlation

Without going in much detail about degree distribution or clustering of the two graphs
We can conclude that:
the topology of MST for the real and an artificial market are greatly different.
Real market properties are not reproduced by simple random models

-2C Portfolio Composition

:
Investors or Companies not traded at Borsa di Milano (Italy)
Companies traded at Borsa di Milano (Italy)

-2C Portfolio Composition

Troisieme Cycle Suisse Romande

-2C Portfolio Composition

-2C Portfolio Composition

BEN Franklin Res Inc C Citygroup GS Goldman Sachs GBL Gabelli Asset Man LM Legg Mason INC NEU Neuberger Bergman STT State Street WM Washington Mutual

-2C Portfolio Composition

-2C Portfolio Composition

It is not only the topology that matters.
In this case as in many other graphs the weight of the link is crucial

For every stock \boldsymbol{i} you compute this quantity. The sum runs over the different holders

- If there is one dominating holder SI tends to one
- If all the holders have a similar part SI tends to $1 / \mathrm{N}$

For every guy \boldsymbol{j} you compute this quantity.
$H I(j) \propto \sum_{i} \frac{w_{i j}^{2}}{\left(\sum_{l} w_{i l}\right)^{2}}$ The sum at the denominator runs over the different holders of i Then you sum on the different stocks in the portfolio This gives a measure of the number of stocks controlled

-2C Stock correlation

Troisieme Cycle Suisse Romande

-2D Food Webs

FOOD CHAIN = sequence of predation relations among different living species sharing the same physical space (Elton, 1927):

\longrightarrow
Flow of matter and energy from prey to predator, in more and more complex forms
\longrightarrow The species ultimately feed on the abiotic environment (light, water, chemicals); At each predation, almost 10% of the resources are transferred from prey to predator.

-2D Food Webs

A series of different interconnected food chains form a food web

Troisieme Cycle Suisse Romande

-2D Food Webs

Trophic Species:
Set of species sharing the same set of preys and the same set of predators (food web \rightarrow aggregated food web).
Trophic Level of a species:
Minimum number of predations separating it from the environment.

Basal Species: Species with no prey (B)

Top Species: Species with no predators (T) Intermediate Species: Species with both prey and predators (I)

-2D Food Webs

\downarrow
Pamlico Estuary (North Carolina): 14 species

Aggregated Food Web of Little Rock Lake (Wisconsin)*:
$\mathbf{1 8 2}$ species $\rightarrow \mathbf{9 3}$ trophic species

How to characterize the topology of Food Webs?

Graph Theory

-2D Food Webs: Degree Distribution

Unaggregated versions of real webs:

R.V. Solé, J.M. Montoya Proc. Royal Society Series B 2682039 (2001)
J.M. Montoya, R.V. Solé, Journal of Theor. Biology 214405 (2002)

-2D Food Webs: Degree Distribution

Aggregated versions of real webs:

Same qualitative behaviour of their unaggregated counterparts. We look for other quantities!.

-2D Food Webs: Spanning Trees of a Directed Graph

A spanning tree of a connected directed graph is any of its connected directed subtrees with the same number of vertices.

In general, the same graph can have more spanning trees with different topologies.

-2D Food Webs Spanning Trees from data

St.Martin's Island (Antilles):
44 species $\rightarrow 42$ trophic species
224 links $\boldsymbol{\rightarrow} 211$ trophic links
(low taxonomic resolution)
Ythan Estuary (Scotland):
$\mathbf{1 3 4}$ species $\rightarrow \mathbf{1 2 3}$ trophic species 597 links $\rightarrow 576$ trophic links (taxonomic resolution : 88\%)

Silwood Park (United Kingdom):
$\mathbf{1 5 4}$ species $\rightarrow \mathbf{8 3}$ trophic species
365 links $\boldsymbol{\rightarrow} \mathbf{2 1 5}$ trophic links
(taxonomic resolution : 100\%)
Little Rock Lake (Wisconsin):
182 species $\rightarrow 93$ trophic species
2494 links $\rightarrow 1046$ trophic links
(taxonomic resolution : 31\%)

-2D Protein Interactions

Network of Interaction for the protein of Baker's Yeast (Saccharomyces Cerevisiae)

-2D Origin of Protein Networks

How do growth and preferential attachment apply to protein networks?

- Growth: genes (that encode proteins) can be, sometimes, duplicated; mutations change some of the interactions with respect to the parent protein
- Preferential attachment: the probability that a protein acquires a new connection is related to the probability that one of its neighbors is duplicated; proportional to its connectivity

-2D Two-hybrid method

The two hybrid method way of detecting protein interactions

-2D More refined Models

With the solvation free energies taken from an exponential probability distribution $p(f)=e^{-f}$, we obtain

$$
P(k) \sim k^{-2}
$$

- The real network is random
- The detection method sees only pairs with large enough binding constants
- The binding constant is related to the solubilities of the two proteins
- Solubilities are given according to some distribution

- 2D Protein Interactions

\leftarrow Scale-Free Degree distribution

Scale-Free Betweenness b(k) \rightarrow

-2D Protein Interactions

\leftarrow neighbors degree per degree $\operatorname{Knn}(k)$

Clustering per degree $\mathbf{c}(\mathbf{k}) \rightarrow$

