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Pamlico Esthuary (North Carolina)
14 species

Little Rock Lake (Wisconsin)
188 species

Species and their predation relationships
form a very peculiar hierarchical graph.

i.e. both predators and prey

Top Species:
i.e. no predators

No prey

Intermediate Species:

Basal Species:

•3A Food Webs (1)
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A spanning tree of a connected directed graph is any of its
connected directed subtrees with the same number of vertices.

In general, the same graph can have more spanning trees
with different topologies.

•3A Food Webs (2)
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•3A Tree Topology (3)
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A0: metabolic rate B
C0: blood volume ~ M

43MB(M) /∝
Kleiber’s Law:

3
4AAC =∝ ηη)(

D
1DAAC +

=∝ ηη)(

General Case (tree-like transportation system 
embedded in a D-dimensional metric space):

the most efficient scaling is

West, G. B., Brown, J. H. & Enquist, B. J. Science 284, 1677-1679 (1999)
Banavar, J. R., Maritan, A. & Rinaldo, A. Nature 399, 130-132 (1999). |

• 3A Allometric Relations (4)
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• 3A Food Webs (5)
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Results in this field are that the spanning tree of the Food web show
Some sort of optimization in resources transfer. 
For this case the most efficient tree should behave like C(A) ∝ A

(D.Garlaschelli, G. Caldarelli, L. Pietronero Nature 423 165 (2003))

• 3A Food Webs (6)
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Law of steepest descent produces the complex Network structure
of rivers drainage basins.

•3B River Network Theory (1)
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River Networks study the interplay between
Fluvial erosion and Landscape Evolution

This interplay produces “UNIVERSAL” non 
trivial properties.

The first quantitative measure of that universality was introduced by
Hack who studied the shape of the basins. 
In particular the Drainage Basins for any River on Earth display similar
Fractal Properties

We investigate the statistical properties of such basins and map these
Properties with the above interplay. 
A possible application presented is trying to infer the presence of erosion
From drainage basins of other planet (Mars).

•3B River Network Theory (2) 
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•3B River Network Theory (3)

Some phenomenological facts are at the basis of the River Network Theory

1. In river basins one can consider precipitation of water as nearly constant. 
Therefore the mass of water collected in the outlet is proportional to the area of 
the basin Ai. 

2. Water follows the steepest descent path (∆hi)
3. The erosion of water modifies the landscape and can cause terrain instability. 

Empirically, the stable landscape are those for which

∆hi Ai
0.5 constant
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•3B Shape of Landscapes (4)

Satellite image of 
Himalaya
Courtesy of NASA
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From satellite images one gets Digital Elevation Models (DEM)

156.4 132.4 111.4

170.8 161.3 108.2

182.4 154.5 106.0

From DEM a spanning tree is computed (via steepest descent)
From spanning tree, the number of points uphill is computed

2 3 4

1 1 6

1 2 9

•3B Digital Elevation Model (5)
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Drainage Basin of Fella river
tributary of  Tagliamento, 

Northern Italy

•3B Real Drainage Basin (6)
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Basin of  Ngaruroro River, New Zealand
•3B Real Drainage Basin (7)
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Larger view of the previous subbasin•3B Real Drainage Basin (8)
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L// ~ Ah, h~0.6

This self-affinity results in power-law distributions of
-Number of points uphill
-Stream lengths

•3B Statistical Measures: Hack’s law (9)
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•3B Statistical Measures: Hack’s law (10)
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Different frequency distributions can be computed

•Frequency distribution P(n) to have n points uphill
For real rivers P(n) ~ n-τ f(n/Lφ) τ=1.43(1)

•Frequency distribution Π(l) to have upstreams of length l
For real rivers Π(l) ~ l-χ g(l/L) χ=1.7(1)

ALL THESE QUANTITIES ARE RELATED TO h! 
One can describe networks by considering the P(n) only

•3B Statistical Measures (11)
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For self-affine river networks

Ah~L//   (h>0.5)

Lo~LH
// (H<1) } h =

1
1 + H

H+1
2H+1=τ

H+1
1=φ

H+1
1=γ

A.Maritan et al., Physical Review E 53, 1510 (1996)

In particular, H ≅ 0.72, h ≅ 0.58, τ ≅ 1.42, γ ≅ 0.58, φ ≅ 0.58

•3B Scaling relations (12)
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Computer simulations of a Self-Organised Critical model reproduce the data

Can one applies these results to other cases?

•3B Computer Simulations (13)
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Data on Mars topography were collected through 
the Mars Orbiter Laser Altimeter (MOLA)

•3B Martian Landscape (14)
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Computer Analysis
of Warego Valley
DEM from MOLA 

Results are that we can distinguish regions whose DEM networks have
properties similar to River Networks on Earth.

Dotted line correspond to
P(A) ∝ A-1.42

•3B Martian Landscape (15)
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Iran

Argentina

Amazonia
Peruvian
and Atacama
Desert

Utah

Lazio

Ecosystem = Set of all living organisms and environmental properties of
a restricted geographic area

we focus our attention on plants

in order to obtain a good universality of the results we have 
chosen a great variety of climatic environments

•3C Taxonomical Trees (1)



Troisieme Cycle Suisse Romande 
Stat. Mech. of Networks-

29

phylum

subphylum

class

subclass

order

family

genus

species

Phylogenetic Tree = hierarchical structure organized on different 
levels, called taxonomic levels, representing:

• classification and identification of different plants
• history of the evolution of different species

A phylogenetic tree already has 
the topological structure of a tree graph

• each node in the graph represents a different taxa
(specie, genus, family, and so on).  All nodes are 
organized on levels representing the taxonomic one

• all link are up-down directed and each one 
represents the belonging of a taxon to the relative
upper level taxon

Connected graph without loops or 
double-linked nodes

•3C Taxonomical Trees (2)
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k

P(
k)

Degree distribution:

γ−∝ kkP )( γ ~ 2.5 ± 0.2
The best results for the exponent value are given by ecosystems 
with greater number of species. For smaller networks its value can 
increase reaching γ = 2.8 - 2.9.

•3C Scale-free trees (3)
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City of Rome
Mte Cairo

Mte Testaccio

Mte Paganuccio

Mti Prenestini
Lazio

2.6 ≤ γ ≤ 2.8
k

P(
k)

γ =2.58 ± 0.08γ =2.52± 0.08

P(
k)

k

P(
k)

k

•3C Geographical Species subset  (4)
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In spite of some slight difference in the exponent value, a subset which represents on its own
a geographical unit of living organisms  still show a power-law in the connectivity distribution.

random extraction of 100, 200 and 400 species between those belonging
to the big ecosystems and reconstruction of the phylogenetic tree

• Simulation:

P(k)=k -2.6

k

P(
k)

LAZIO

k
P(

k)

ROME

k

P(
k)

k

P(
k)

k

P(
k)

•3C Random subsets (5)
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Particular rule to put a species in a genus, a genus in a family….?

P(kf, kg) that a genus with degree kg belongs to a family with degree kf

kf=1 kf=3
kf=2 kf=4

ko=1 ko=3
ko=2 ko=4

P(kf,kg)∝ kg
-γ

P(ko,kf)∝ kf
-γ

fixed

P(ko,kf) that a family with degree kf belongs to an order with degree ko

γ ~ 2.2 ± 0.2

γ ~ 1.8 ± 0.2

fixed

〈 kg〉 = ∑g kg P(kf,kg)

fixed

fixed

〈 kf〉 = ∑f kf P(ko,kf)

kg

P(
k f, 

k g)

〈 k
g〉

kf

〈 k
f〉

kokf

P(
k o,

 k f)

NO!
•3C Memory (6)
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1)   create N species to build up an ecosystem

2)   Group the different species in genus, the genus in families, then families 
in orders and so on realizing a phylogenetic tree

- Each species is represented by a string with 40 characters representing 40
properties which identify the single species (genes);

- Each character is chosen between 94 possibilities: all the characters and symbols 
that in the ASCII code are associated to numbers from 33 to 126:

P g H C ) %o r ? L 8 e s / C c W& I y 4 ! t G j 4 2 £ ) k , ! d q 2 = m: f V

Two species are grouped in the same genus according 
to the extended Hamming distance dWH:

c1i = character of species 1 with i=1,……….,40
c2i = character of species 2 with i=1,……….,40

dEH = ( ∑i=1,40 |c1i - c2i| )/40

A

Za

z B

b

•3C A simple model (7)
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dEH ≤ C
Fixed threshold

species 1

species 2
same genus

P g H C ) %o r ? L

G j 4 2 £ ) k , ! d

c14

c24

( c1i + c2i )/2

Same proceedings at all levels with a fixed threshold for each one

At the last level (8) same phylum for all species (source node)

genus = average of all species belonging to it

P g H C ) % o r ? L

G j 4 2 £ ) k , ! d

c14

c24

|c1i - c2i| = 17

c(g)4

:

•3C A simple model (8)
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No correlation: species randomly created with no
relationship between them

Genetic correlation: species are no more independent but
descend from the same ancestor

• No correlation:

P(
k)

k

ecosystems of 3000 species 
each character of each string is chosen 
at random
quite big distance between two different
species:

〈dEH〉 ~ 20

 (S. `Ud~j <@a~Nf KMgXw´*: *4" j ° zG9/ Fy2J ´R_x5

KL`<G´DQbmVUW; dLUxogZk*8yuNvDKZ+{Cx6I 6dz

(γtop ~ 1.7 ± 0.2     γbottom ~ 3.0 ± 0.2 )

•3C New species (9)
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〈dEH〉 ~ 0.5
g 50_" &y=Eo[ l RC( xz G? g=X%W@@/ Xr ] TKg? 6YG^Qz

g 50_" &y=Eo[ : RC( xz G? 0=/ %W´S/ Xr ] TKg? 6K^^Qz

single species ancestor of all species in the ecosystem
at each time step t a new species appear:

- chose (randomly) one of the species already present in the ecosystem
- change one of its character

3000 time steps

natural selection Environment = average of all species present in the
the ecosystem at each time step t. 

At each time step t we calculate the distance between
the environment and each species: 

dEH < Csel

dEH > Csel

survival

extinction

small distance between different species:

k

P(
k)

P(k) ~ k -γ γ ~ 2.8 ± 0.2

•3C New species (9)
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P(
k)

k k

P(
k)

Correlated:Not Correlated:

•3C A comparison (10)
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Results: universality (same statistical properties for ecosystems with 
different number of species and climatic environment) and 
scale-free properties

comparison between geographical and random subsets: 
evidence of the existence of a correlation between species in 
a same ecosystem due to some self-organizing properties

Future:

simple model presented shows the importance of a 
genetic correlation

model presented is only a beginning: improvement with
particular attention to environment and natural selection

Applications:
prevent correlated plants extinction due to human
influence

plant ecosystems structure and reafforestation

new data and chinese box ecosystem

•3C Conclusions (11)
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Standard Theory of Random Graph
(Erdös and Rényi 1960)

Random Graphs are composed by starting with N vertices. 
With probability p two vertices are connected by an edge

P(k)

k
Degrees are Poisson distributed

Model of Growing Networks
(Barabási 1999)1) Growth

Every time step new nodes enter the system
2) Preferential Attachment

The probability to be connected depends on the      
degree P(k) ∝ k

Degrees are Power law distributed

!
)()(

k
pNekP

k
pN−=

γ−∝ kkP )(

•3D Models (1)
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Exploration algorithm (P. De Los Rios, T. Petermann)

Starting from a highly connected node,
we move along each of its links with probability
p: if a link is lost, it is lost forever.

We iterate the procedure from every reached
node, and so on until there are no further links
to explore.

We then consider the network of the explored
links and nodes as the “measured” network.

•3D Models (2)
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Exploration of a BA model
Every link is explored with probability p=0.5

The true exponent
is 3… 

the “measured” 
exponent is 2.5

•3D Models (3)
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An analytical derivation I
We use the lack of correlations in BA networks:
a node of degree k can be connected with nodes of any 
other degree (i.e. of any possible age).

So, we can reformulate the exploration problem as a 
process evolving in parallel to the growth of the network. 

1. Start from m0 nodes, all of them “detected”
2. Add a new node, and connect it to one of the existing 

nodes with preferential attachment
3. This new node is “detected” if it connects to a “detected”

node AND if the connection is explored (with probability p)
4. Repeat from 2. till completion

•3D Models (4)
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An analytical derivation II

The total number N(t) of “detected” nodes 
at time t evolves according to the rate eq.

0

( ) ( ') ( ', ) '
' 2

tdN t dN t k t tp dt
dt dt t

= ∫
Density of detected 
nodes at time t

Probability to connect
to a node born at 
time t’

•3D Models (5)
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An analytical derivation III

We assume that N(t) grows algebraically
⇒ dN(t)/dt ~ tα

We remember that k(t’,t) = (t/t’)1/2

Plugging everything in the rate equation we
obtain

α = (p-1)/2

•3D Models (1)
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An analytical derivation IV – and last

We use the usual relation P(k)dk = dt,
but now we modify it to P(k)dk = dN(t),
to obtain

P(k) ~ k-(2+p)

p=0.5  implies P(k) ~ k-2.5

Message: imperfect exploration changes
the exponent!

•3D Models (6)


