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4A Graph Definitions

A Graph G(V,m) is an object
composed by N vertices and m edges

Edges can be oriented —

- Degree k (In-degree k;, and out-degree k,,; ) = number of edges (oriented) per vertex
- Distance d = number of edges amongst two vertices ( in the connected region !)

- Diameter D = Maximum of the distances ( in the connected region !)

- Clustering = cliques distribution, or clustering coefficient

Troisieme Cycle Suisse Romande
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*4A Statistical measures

‘1 Degree frequency density P(k) = how many times you find a vertex whose degree is k

k
e Pk =¥ PNV Pk)ck” 2w

‘2 Degree Correlation Knn (k) = average degree of a neighbour of a vertex with degree k

A<Knn>

No structure

K >

-3 Clustering Coefficient C(k) = the average value of ¢ for a vertex whose degree is k
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4 A Statistical measures

‘4 Centrality betweenness b(k) = The probability that a vertex whose degree is k
has betweenness b

between any pair of vertices passing

betweenness of I is the number of distances <.
through I

‘S TREES ONLY!!! P(A) = Probability Density for subbranches of size A

11 11
Ny Size distribution: N Allometric relations:
11 35 @1 1 ,,=P@A) o | C(A)
115 2 3
S SR T
0 5 ) S | S ) S A ol 1 ‘ ‘ : :
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*4A Boring stuff (1/3)

eThe graph size n is the number of its vertices.
eThe graph measure m is the number of its edges.
oThe degree of a vertex in a graph is the number of edges that connects it to
other vertices.
eIn the case of an oriented graph the degree can be distinguished in in-degree
and out-degree.
eWhenever all the vertices share the same degree the graph is called regular.
e A series of consecutive edges forms a path.
oThe number of edges in a path is called the length of the path.
oA Hamiltonian path is a path that passes once through all the vertices (not
necessarily through all the edges) in the graph.
oA Hamiltonian cycle 1s a Hamiltonian path which begins and ends in the
same vertex.
oAn Eulerian path is a path that passes once through all the edges (not
necessarily once through all the vertices) in the graph.
oAn Eulerian cycle is an Eulerian path which begins and ends in the same
edge.
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*4A Boring stuff (2/3)

eWhenever all the vertices share the same degree the graph is called regular.
oA series of consecutive edges forms a path.
oThe number of edges in a path is called the length of the path.
oA Hamiltonian path is a path that passes once through all the vertices (not
necessarily through all the edges) in the graph.
oA Hamiltonian cycle is a Hamiltonian path which begins and ends in the
same vertex.
oAn FEulerian path is a path that passes once through all the edges (not
necessarily once through all the vertices) in the graph.
oAn Eulerian cycle is an Eulerian path which begins and ends in the same
edge.
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Standard Theory of Random Graph
*4A Models (1 (Erdés and Rényi 1960)

P(k) oot |}

T
oosp, 0 Y ow

Random Graphs are composed by starting with n vertices. Dzt e IHoreson’ el e

k
With probability p two vertices are connected by an edge P(k) = e PN (pg )

Small World
(D.J. Watts and S.H. Strogatz 1998)

Small World Graph are composed by adding

: Degrees are peaked around mean value
shortcuts to regular lattices & P
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*4A Models (2) Model of Growing Networks
(A.-L. Barabasi 1999)

1) Growth G
Every time step new nodes enter the system o ° w| N
2) Preferential Attachment ° 2,
The probability to be connected depends on the ° )
degree P(k) c k | M A
0/7 10" -
o 10° 10 k 10° 10°

/) Degrees are Power law distributed
O ﬁ Pk)oc k™

Intrinsic Fitness Model
(G.Caldarelli A. Capocci, P.De Los Rios, M.A. Munoz 2002)

1) Growth or not
Nodes can be fixed at the beginning or be added

2) Attachment is related to intrinsic properties
The probability to be connected depends on the
sites

% Degrees are Power law distributed

Pk)oc k™
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4A Random Graphs (1)

A general derivation of interesting formulas for RG is present on

B. Bollobas Graph Theory: an Introductory Course (Springer-Verlag, New York, 1977)
Here we will present some results

One elegant approach is given by Generating Function approach

Gy(x)=> Px"
k=0

The P, is the probability that a random vertex has a degree k —— G, (1) =1

_ 1 ﬁkGo(x)
k! ox*

)

x=0

(kY=Y kP, = G,(1)

Troisieme Cycle Suisse Romande 10
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4A Random Graphs (2

*The number m of links in a Random Graph is a random E _ N(N -1)
(m)=p

variable whose expectation value is 2
N(N-1)

*The probability to form a particular Graph E(G(N,m)=p"(1-p) ?2

G(N,m) is given by

*The degree has expectation value E(k)=2m/N = p(N-1)= pN

Therefore the degree probability distribution is given by
N _ 1 N k e—pN
P(k): pk(l_p)(N—l)—k ~ (p )
k k!
Troisieme Cycle Suisse Romande 11
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4A Random Graphs (3

*We can give an estimate of the Clustering Coefficient YT
for a complete graph it must be 1. E(C)z=p=
If the graph is enough sparse then two points link each N
other with probability p
*Same estimate can be given for the average distance 1 between
two vertices.
If a graph has <k> average degree then
the first neighbours will be <k>
the second neighbours @ <k>?
the n-th neighbours © <k>"
<~ 10g(N)
*For the Diameter D — <k>? of order N <D= loo(k
og(k)
Troisieme Cycle Suisse Romande 12
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4A Random Graphs (4

k=0 k=0

- © (n-—1 )
GO(X)EZkak:ZL . jpk(l p)(n 1)-k k:(l p+px) ~ e pn(x-1)

: As in the ordinary Poisson Distribution
(kY=Y kP, =G,(1) = pn

012

-~ P(k)=e14(12)/1

k k
P - 10 Gok(x) _ (pn) .
k! Ox k!

0.02
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4B Small World (1)

Take a regular lattice and add rewire with probability ¢ some of the links
for analytical treatment, a slight modification is recommended.
Instead of rewiring add the new links proportional to the existing links

The total number of shortcuts is Lyo ( A= 2)

Average degree is now k=2 Z(l + ¢)

Therefore for small ¢ the degree distribution is peaked around 2y

Troisieme Cycle Suisse Romande 14
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4B Small World (2)

3(k—2
Clustering Coefficient of the regular lattice = —( )
(¢ — 0 and k< 2/3N otherwise C=1) 4(k —1)

For the average distance there is no result
but we can define a distance in the problem, given by the mean distance
between two shortcuts endpoints.

We have that in the regular lattice (start with y=1I and generalize)

L Zd —2(0+1+2+ +N/2)= sz ]Z: = ]Z ) :4ﬂ
=y, X
We have that in the Random Graph
= log(NV)
log(k)
Troisieme Cycle Suisse Romande 15
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4B Small World (3)

Several conjectures, made but neither the actual distribution of path lengths
nor the </> has been found

Now in Small World graphs, the behaviour must be intermediate
between the regular lattice and Random Graph.

If we define a characteristic length in the system as for example

&= average distance between two endpoints of shortcuts (not the same!)

L1
2(Lyp) 2x¢

5

& diverges when ¢ — 0

¢ is characteristic distance we can define in the model so that we make
the ansatz

L 1 x <<1
= £G(LI§)= 2 —G(x) G(x) =
“ log(x) x>>1
L X
Troisieme Cycle Suisse Romande 16
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*4C BA model (1)

The basic approach is through continuum theory, degree
is now a continuum variable:

Start with m, vertices and add <t m new
links

p
akl‘ _ mki — mki — ki —> kl(t) =m i DIB
Ot Z kj 2tm 2t

j=L,N

As for the degree distribution we can compute the P(k.<k)

1/p
m
kl/ﬁ)

P(k,(t) < k)= P(t >t

Troisieme Cycle Suisse Romande
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*4C BA model (2)
The distribution of incoming vertices is uniform in time P(t;) =

1
m,+1t

VP 1/ 1

m
1—¢
k”ﬂ) K'"7 (t+m,y)

P(k.(t)<k)=P(t >t
From which we obtain

OP(k,(t)<k) 2m'’ 1

= >2m' Pk
ak kl/ﬂ+l (t+m0) t— o0

Pk) =

y=—+1=3

Troisieme Cycle Suisse Romande
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*4C BA model (3)

Same result can be obtained from Rate equation approach
where NV, () is the number of nodes whose degree is k

de :m(k_l)Nk—1(t)_ka(t)+5

P(k) — m
dt > KN, (1) “
k=0,N ]
N, (1) = tP (k)
Asymptotically one obtains the same result since ]
> N (t)=2mt
| k=0,N

We can now check the robustness of preferential attachment with
respect to different choice of function as for example P(k) & k=

Troisieme Cycle Suisse Romande
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*4C BA model (4)

The rate equation now is (m=1)

P(k) =

AN, (k=D N, ()= k“N(®) _ (k=D"N, ()= k"N,(®) |

a << 1

This product can be expanded in series. The result is a stretched exponential

D k*N, (1)

k=0,N
Sublinear case

M, ()=ut > 1< u=pu(a)<?

P(k) = ki [Ta+ %)

j=1k

Troisieme Cycle Suisse Romande
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*4C BA model (5)

o >> 1 Superlinear case

No analytical solution of

dN, _ (k=D"N, () =k"N, (1) _ (k=D*N, () =k"N, (@)
dt > kN, (t) - M (1)

k=0,N

Pk) =

Ok

From recursion procedure some indication of the behaviour.
For a >2 there is one large hub + leaves
In general the number of nodes with degree larger than value j is finite
NO MORE SCALE FREE BEHAVIOUR

Troisieme Cycle Suisse Romande 21
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4D Fitness Model

Without introducing growth or preferential attachment we can have power-laws
We consider “disorder” in the Random Graph model
(i.e. vertices differ one from the other).

This mechanism is responsible of self-similarity in Laplacian Fractals

*Dielectric Breakdown

T

*In a perfect dielectric *In reality

Troisieme Cycle Suisse Romande 22
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1. Assign to every vertex one real positive number x that we call fitness.
fitnesses are drawn from probablity distribution p(x)

2. Link two vertices with fitnesses x and y according to a probability
function f(x,y)={(y,x) (choice function).

STATIC if N is kept fixed

The model can be considered [
DYNAMIC if N is growing

This is a GOOD GETS RICHER model

No preferential attachment is present.

G. Caldarelli, A. Capocci, P. De Los Rios, M. A. Muioz Phys. Rev. Lett. 89 258702 (2002).
V.D.P. Servedio, P. Butta, G. Caldarelli ArXiv:cond-mat/0309659 (2003).

Troisieme Cycle Suisse Romande 23
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4D Fitness Model

Different realizations of the model

a) b) ¢) have p(x) power law with exponent 2.5 ,3 ,4 respectively.

d) has p(x)=exp(-x) and a threshold rule.

Troisieme Cycle Suisse Romande
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4D Fitness Model

Degree distribution for cases
a) b) ¢) with p(x) power law with
exponent 2.5 ,3 ,4 respectively.

1e+05:

10000

%1000:
Degree distribution for the case 100-
d) with p(x)=exp(-x) and a threshold rule.

10

10000
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*4D Fitness Model: Formulation of the Problem

The Degree probability distribution P(k) is a functional of p(x) and f(x,y).

DIRECT PROBLEM

Given a fitness p(x) — which choice function f(x,y) produces scale free

graphs? i.e. P(k) = ck®

INVERSE PROBLEM

Given a choice function f{x,y) — which fitness p(x) produces scale free

graphs? i.e. P(k) = ck®

Troisieme Cycle Suisse Romande 26
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*4D FKitness Model: Useful formulas

Fitness probability distribution

R = [p(dy  p(3)20- {

R(w) =1

 Vertex degree
K (x)
N

k(x) =

= [ p(1 S (x,y)dy > 0 <k(x)<1

» Vertex degree Probability Distribution

P(k(x))dk = p(x)dx — P(k(x)) = p(x)x'(k)

Troisieme Cycle Suisse Romande
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P(k(x)) =

p(x)
k' (x)
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4D Fitness Model: Useful formulas

e Degree Correlation

N[ ok p(»)dy

K, (x)= )

» Vertex Clustering Coefficient

[[ 1 f .2 f () p(2)p(2)dydz
K2 (x)

C(x)=

Troisieme Cycle Suisse Romande 28
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P(k) = ]': (();C)) We impose P(k)=c(k(x))* — l’j(();)) =c(k(x))”

Multipling both sides of the equation for £’(x) and integrating from 0 to x

[ 1
(k—a+1|_|a+1|R(x)j el a<1
’ c
R(x) 3
k(x) =1 k,e © a=1
1
a+l
(k:”+a+1R(x)j a > 1
c
K(x)

k(x) =

= [ p(1).f (x,y)dy > k, = k(0)

R(x)= [ p(y)dy

Troisieme Cycle Suisse Romande 29
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We now have a constraint on the fitness distribution p(x) and choice function f{x,y)

Some exact results

S(x,y)=g(x)g(y)= PP k(x)k(y) = Vp(x)
J,y)=fxxy)=k(xty)Fk'(xxy) > plx)=e”

k(x) = ke © o =1l

wr . a+1 atl
(ko '+ » R(x)j o>l

Troisieme Cycle Suisse Romande 30
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*4D Fitness Model: Exact cases

N PK)

|00

| 00

0.1
I

Special case f(x,y)=g(x)g(y)

Random network
gi0F=0.002, e=0.2

—a Network
— .2/k

N=IDJ',E|15E|1'|I'.|Ie=IU

, -X
pixi=e
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4D Fitness Model: Exact cases

NPiK)

10

-
3

Special case f(x,y)=f(x+y)

! [ I I ! | I I

— Metwork
— 0.0k
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4D Fitness Model: Conclusions

* Using the intrinsic fitness model it is possible to create scale-free
networks with any desired power-law exponent

« This is possible for any fitness probability distribution p(x), it does not
matter if they are (e.g.) exponential, power-law or Gaussian.

«  We found analytic expressions for the choice function f(x,y) in three
cases:
+ I Y)EY) < o),
©  fxy)=txty) px)=e*

« If f(x,y)=1(x)f(y) both vertex degree correlation and clustering coefficient
are constant

Troisieme Cycle Suisse Romande 34
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4E Data and Models

TABLE 1. The general characteristics of several real networks. For each network we have indicated the number of nodes, the
average degree { k). the average path length ', and the clustering coefficient . For a comparison we have included the average
path length #, ., and elustering coefficient €, of a random graph of the same size and average degree. The numbers in the last
column are keyed to the symbols in Figs. 8 and 5.

Network Size k) 3 £ ramd C Crond Reference Nr.
WWW, site level, undir. 155127 35.21 Al 3.35 01078 0.00023 Adamic, 1999 |
Internet, domain level  3015-6209 3.52-4.11 3.7-3.76 636618 0.18-03  0.001 Yook el al., 2001a, 2
Fastor-5atorras ef al., 2001

Movie actors 22522 6l 3.65 2.99 0.79 0.00027 Watts and Strogatz, 1998 3
LANL co-authorship 52909 Q.7 59 4.79 0.43 18101 Newman, 2001a, 2001b, 2001c 4
MEDLINE co-authorship 1520 251 18.1 4.6 4.91 0.066 1.1%10° Newman, 200la, 2001b, 2001c 5
SPIRES co-authorship 56627 173 4.0 2.1z 0.726 0.003 Newman, 2001a, 2001b, 2001c &
NCSTRL co-authorship 11994 350 0.7 7.3 0496 3x10°'  Newman, 2001a, 2001b, 2001c 7
Math. co-authorship 70975 3.9 05 8.2 059  S4x10°° Barabasi el al., 2001 8
Neurosci. co-authorship 209293 11.5 & 5.01 0.76 55x10°° Barabasi ef al., 2001 9
E. coli, substrate graph 282 T35 29 3.04 .32 0.026 Wagner and Fell, 2000 10
E. coli, reaction graph 315 28.3 2.62 1.98 0.59 0.09 Wagner and Fell, 2000 11
Ythan estuary food web 134 8.7 243 2.2 22 0.06 Montoya and Sole, 2000 2
Silwood Park food web 154 4.75 340 3.23 015 0.03 Montova and Sole, 2000 13
Words, co-occurrence 460,902 T0.13 .67 3.03 0.437 0.0001  Ferrer i Cancho and Sole, 2001 14
Words, synonyms 22311 13.48 4.5 3.84 0.7 0.0006 Yook ef al., 2001b 15
Power grid 4941 2.67 8.7 12.4 0.08 0.005 Watts and Strogatz, 1998 L6

C. Elegans 282 14 2.65 225 0.28 0.05 Watts and Strogatz, 1998 L7

R.Albert A.-L. Barabasi Statistical Mechanics of Complex Networks
Review of Modern Physics 74 47 (2002).
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4E Data and Models

TABLE II. The scaling exponents characterizing the degree distribution of several scale-free networks, for which Pk follows a
power law (2). We indicate the size of the network, its average degree (k. and the cutoff & for the power-law scaling. For directed
networks we list se parately the indegree (v,,) and outdegree ( v,,,) exponents, while for the undirected networks, marked with an

Fean
asterisk (*), these values are identical. The columns {,, ;. !, 4. and [ compare the average path lengths of real networks with

rona felelly

power-law degree distribution and the predictions of random-graph theory (17) and of Newman, Strogatz, and Watts (2001) [also

see Eq. (63) above], as discussed in Sec. V. The numbers in the last column are keved to the symbols in Figs. 8 and 9.

Network Size (kY i ¥ out Yin ceal © rand © pow Reference Nr.
WWW 325729 4.51 Q00 245 2.1 1.2 832 477 Albert. Jeong, and Barabasi 1999 1

WWW 4107 7 238 2.1 Kumar ef al., 1999 2

WWW 2w 0% 7.5 4000 0 292 2.1 s B85 Tal Broder et al., 2000 3
WWW, site 260000 1.94 Huberman and Adamic, 2000 4
Internet, domain® 30154389 342-376 3040 21-22 21-22 4 a3 52 Faloutzos, 1999 5
Internet, router® 3888 257 30 248 248 1215 875 767 Faloutzsos, 1999 i
Internet, router® 150000 2.66 a0l 24 24 11 128 747 Govindan, 2000 T
Movie actors® 212250 I8.TE Q00 23 23 454 365 4.01 Barabasi and Albert. 1999 e
Co-authors, SPIRES® 56627 173 1100 1.2 1.2 4 212 195 Mewman, 2001h a9
Co-authors, neuro.® 209293 11.54 400 2.1 2.1 f 501 386 Barabasi e al., 2001 L0
Co-authors, math.® T0975 39 120 25 2.5 =] 2 6453 Barabasi e al., 2001 11
Sexual contacts® 2810 34 34 Liljeros et al.. 2001 12
Metabolic, £ coli 778 T4 110 2.2 2.2 32 332 289 Jeong el al., 2000 13
Protein, &, ceren® 1870 239 24 24 Jeong, Mason, er al., 2001 )
Ythan estuary® 134 a7 35 .05 .05 243 226 171 Montoya and Solé, 2000 14
Silwood Park*® 154 4.75 2 1.13 1.13 34 323 2 Montoya and Solé, 2000 L&
Citation TH3I 339 B8.57 3 Redner, 1998 L7

Phone call 53x10° EN L 2.1 21 Aello ef al., 2000 L&
Words, co-occurrence® 460 002 7013 29 2.7 Ferrer i Cancho and Solé, 2001 19
Words, synonyms® 22311 13.48 2.8 2.8 Yook ef al, 2001b 20

R.Albert A.-L. Barabasi Statistical Mechanics of Complex Networks
Review of Modern Physics 74 47 (2002).
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4E Future?

Brience, Vol 302, Issue 3651, 1727-1736, December 5, 2003
A Protein Interaction Map of Drosophila melanogaster

L. Giut,l* g 8. ]3f||tlne-1‘,l*J'r C. Brmm—‘er,l* Al f_‘lmmlluu'i,l* B. I{uﬂng,l Y. Li,1 Y.L Hfm,l C.E. Dui,l
2 B. Gmlv.-‘in,l E. "i-"it-:-ls,l G. "i-"ijﬂ}'mlmnmlm‘,l P Puchm‘t,l H L-Iﬂflmlelﬁ,l ML “-"e-lsh,l Y. Knng,l
i E. Ze-rlmse-n_.l R I'»-I:nlm]m,l Z. Vm‘rune,l A {‘u]]is,l M. I'»-Iintu,l 5. Bm‘gess,l L. I'L'ICDIIIIiE'l,l
E. Stimps-:-n,l F. Spl‘iggs,l J. “-"i]].iﬂms,l K. Nem‘ath,l . I-:-imue-,1 LL Agee,l E. V-:-ss,l K. Flu't:nlc,l
e R Renm]]i,l N. Amwnsen,l S. {'_‘m‘ru]lﬂ,l E. Bin:lce]lmupt,l Y. Laznvatsky,l A DﬂSilvﬂ,l J. Ehl:mg,2
B (A Sti‘ll‘l}'ﬂl‘l,z R. L. Finley, -.Tr.,2 E P 1;“r"hit-e-,s ML Brmr-e-rmml,l T. Jﬂn‘ie,l 5. Gul[l,l ML I.-e-m:h,l
8 J Knight ! R. A. Shimkets,! M. P. McKenna,! J. Chant ¥ J. M. Rothberg!

B Drosophila melanogaster 15 a proven model system for many aspects of human biology. Here we present a
% two-hybrid-based protein-interaction map of the fly proteome. A total of 10,623 predicted transcripts were
izolated and screened against standard and normalized cotmplementary DINA ibraries to produce a draft map
of 7048 protems and 20 405 mteractions. & computational method of rating two-hybnd mteraction confidence
¥ was developed to refine this draft map to a higher confidence map of 4679 proteins and 4780 interactions.

d Statistical modeling of the network showed two levels of organization: a short-range organtzation, presumably
corresponding to muliprotem complexes, and a more global orgamezation, presumably corresponding to
intercomplex connections. The network recapitulated known pathways, extended pathways, and uncovered

previcusly unknown pathway components. This map serves as a starting point for a systems biology modeling
of rulticelular orgarisms, meluding hurmans.
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4E Future?

g ] Fig. 3. Statistical properties of the refined Drosaphile mteraction map. The high-

' | confidence Drosaphila protein-protein interactions form a small-world network with
evidence for a herarchy of orgamzation. Network properties are presented for the giant
connected component, in which 3659 patrwise mteractions connect 3039 proteins mito a
single cluster (see text for details). (A) The probability distribution for the shottest path
between a pair of proteins in the actual netwotk (green pomts) peaks at 9 to 11 links, with
amean of 9.4 links. In contrast, an ensemble of randotnly revared networkes shows a mean
separation of 7.7 links between protems. Biological organization may be responsible for
flattening the actual network by enhancing links between protems that are already close. (B) Clustenng, or enhancemernt of
connections between protems that are already close, 13 analyzed quantitatively by counting the mumber of closed loops (triangles,
souares, pentagons, etc.) i which the penteter 18 formed by a senes of proteins connected head-to-tatl, with no protemn
repeated. The actual netwotk (green points) shows an enhancement of loops with petirneter up to 10 to 11 relative to the
random network (red pomts). In both (&) and (B), the one-level and two-level models produce nearly ndistingmushable fits for
the random networks, indicating the absence of structured clustermg. [View Larger Version of this Image (14E GIF file)]
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® Fig. 2. Confidence scores for protetn-protein interactions (A) Drosaphila protetn-protein interactions
: _ hawe been binned according to confidence score for the entire set of 20,405 interactions (black), the
129 positive traiing set examples (green), and the 196 negative tramning set examples (red). (B) The
"h ‘ | | I 7D48.p.r-:}tems identified as pam.cipating it protet-protein ﬁltnsl:rslictic::-ns have keen bﬁmeﬁ an:-c-:}rdmg to
dilill Iy the tminimuim, average, and masmum confidence score of their interactions. Proteins with high-

confidence interactions total 4679 (66% of the proteins in the network, and 24% of the protem-coding
, genes in the Dvrosophila genome). (C) The correlation between GO annotations for interacting protein
T pairs decays sharply as confidence falls from 1 to 0.5, then exhibits a weaker decay. Correlations were

" obtained by first calculating the deepest level in the GO lierarchy at which a patr of interacting proteins
~... | shared an annotation (nteractions mvolnng unannotated proteins were discarded). The average depth
was calculated for interactions binned according to confidence score, with ban centers at 0.05, 0.1,
0,95 Fmally, the correlation for the bun centered at x was defined as [Depei(x) — Dapth( [ Depih
(0.95) — Depei (0] This procedure effectively controls for the depth of each hierarchy and for the probabiity that a pair of random proteins
shares an annotation. (D) The number of interactions per protein i3 shown for all interactions (black circles) and for the high-confidence
mteractions (green circles). Linear behawor m this log-log plot would mdicate a power-law distnbution. Although regions of each distribution
appear inear, neither distnbution may be adecquately fit by a single power-law. Both may be fit, however, by a combination of power-law
and exponential decay, Prob(x) ~ » _‘“exp_ﬁn, indicated by the dashed lines, with » 2 for the fit greater than 0,98 i either case (all
mteractions: e = 1. 20 £ 0,08, [1 = 0028 £ 0.006; lugh-confidence interactions: o = 1.26 £ 0.25, =027 £ 0.05). Note that the power-law
exponents are within le for the two mnteraction sets. [View Larger Version of this Tmage (29E GIF file)]
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Example of a network extracte
dusing the methods described
before. Top panel shows a
pictorial representation of the
network (1/8 of all nodes are
shown, colored according to its
degree: yellow = 1, green = 2,
red =3, blue=4, etc).

I 0 4 i I|| Iidél
| = The bottom panel shows the
10° E distribution of links plotted for
three values of the correlation

700 800
Degree K

threshold. The inset depicts the
link distribution

for an equivalent randomly
connected network.

Counts (k)

cond 3l
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