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· Degree k (In-degree kin and out-degree kout ) = number of edges (oriented) per vertex

A Graph G(N,m) is an object
composed by N vertices and m edges

Edges can be oriented →

· Distance d = number of edges amongst two vertices ( in the connected region !)
· Diameter D = Maximum of the distances ( in the connected region !)
· Clustering = cliques distribution, or clustering coefficient

•4A Graph Definitions
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·1 Degree frequency density P(k) = how many times you find a vertex whose degree is k 

P(k)

k

!
)()(

k
pNekP

k
pN−= γ−∝ kkP )(

·2 Degree Correlation Knn (k) = average degree of a neighbour of a vertex with degree k 

·3 Clustering Coefficient C(k) = the average value of c for a vertex whose degree is k 

•4A Statistical measures
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·4 Centrality betweenness b(k) = The probability that a vertex whose degree is k 
has betweenness b

·5 TREES ONLY!!!  P(A) = Probability Density for subbranches of size A
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•4A Statistical measures
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•The graph size n is the number of its vertices. 
•The graph measure m is the number of its edges. 
•The degree of a vertex in a graph is the number of edges that connects it to 
other vertices. 
•In the case of an oriented graph the degree can be distinguished in in-degree
and out-degree.
•Whenever all the vertices share the same degree the graph is called regular. 
•A series of consecutive edges forms a path.

oThe number of edges in a path is called the length of the path. 
oA Hamiltonian path is a path that passes once through all the vertices (not 
necessarily through all the edges) in the graph.
oA Hamiltonian cycle is a Hamiltonian path which begins and ends in the 
same vertex. 
oAn Eulerian path is a path that passes once through all the edges (not 
necessarily once through all the vertices) in the graph. 
oAn Eulerian cycle is an Eulerian path which begins and ends in the same 
edge.

•4A Boring stuff (1/3)
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•Whenever all the vertices share the same degree the graph is called regular. 
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oA Hamiltonian path is a path that passes once through all the vertices (not 
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•4A Boring stuff (2/3)
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Standard Theory of Random Graph
(Erdös and Rényi 1960)

Random Graphs are composed by starting with n vertices. 
With probability p two vertices are connected by an edge

P(k)

k
Degrees are Poisson distributed

!
)()(

k
pNekP

k
pN−=

•4A Models (1)

Small World
(D.J. Watts and S.H. Strogatz 1998)

Degrees are peaked around mean valueSmall World Graph are composed by adding
shortcuts to regular lattices
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Intrinsic Fitness Model 
(G.Caldarelli A. Capocci,  P.De Los Rios, M.A. Munoz 2002)

1) Growth or not
Nodes can be fixed at the beginning or be added

2) Attachment is related to intrinsic properties
The probability to be connected depends on the      
sites

Degrees are Power law distributed

γ−∝ kkP )(

•4A Models (2) Model of Growing Networks
(A.-L. Barabási 1999)1) Growth

Every time step new nodes enter the system
2) Preferential Attachment

The probability to be connected depends on the      
degree P(k) ∝ k

Degrees are Power law distributed
γ−∝ kkP )(
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•4A Random Graphs (1)

A general derivation of interesting formulas for RG is present on 
B. Bollobas Graph Theory: an Introductory Course (Springer-Verlag, New York, 1977)
Here we will present some results
One elegant approach is given by Generating Function approach
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•4A Random Graphs (2)
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Therefore the degree probability distribution is given by
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•4A Random Graphs (3)

•We can give an estimate of the Clustering Coefficient
for a complete graph it must be 1.
If the graph is enough sparse then two points link each
other with probability p

N
kpCE ><

≅≅)(

•Same estimate can be given for the average distance l between
two vertices.
If a graph has <k> average degree then
the first neighbours will be <k>
the second neighbours <k>2

……………..
the n-th neighbours <k>n

•For the Diameter D → <k>D of order  N )log(
)log(

k
NDl ≅≤
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•4A Random Graphs (4)
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•4B Small World (1)

Take a regular lattice and add rewire with probability φ some of the links
for analytical treatment, a slight modification is recommended.
Instead of rewiring add the new links proportional to the existing links

The total number of shortcuts is

Average degree is now

χϕL

)1(2 ϕχ +=k

)2( =χ

Therefore for small φ the degree distribution is peaked around 2χ



Troisieme Cycle Suisse Romande 
Stat. Mech. of Networks-

15

•4B Small World (2)

Clustering Coefficient of the regular lattice 
(φ → 0 and  k< 2/3N otherwise C=1) 

For the average distance there is no result
but we can define a distance in the problem, given by the mean distance
between two shortcuts endpoints.

)1(4
)2(3

−
−

=
k
kC

χ4
Nli =

We have that in the regular lattice (start with χ=1 and  generalize)
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We have that in the Random Graph
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•4B Small World (3)

Now in Small World graphs, the behaviour must be intermediate 
between the regular lattice and Random Graph.
If we define a characteristic length in the system as for example
ξ = average distance between two endpoints of  shortcuts (not the same!)

χϕχϕ
ξ
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ξ diverges when φ → 0

ξ is characteristic distance we can define in the model so that we make
the ansatz

Several conjectures, made but neither the actual distribution of path lengths
nor the <l> has been found
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•4C BA model (1)
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As for the degree distribution we can compute the P(ki<k)

The basic approach is through continuum theory, degree
is now a continuum variable:

Start with m0 vertices and add t m new 
links
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•4C BA model (2)

From which we obtain
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Asymptotically one obtains the same result since

Same result can be obtained from Rate equation approach
where Nk(t) is the number of nodes whose degree is k
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•4C BA model (3)
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We can now check the robustness of preferential attachment with
respect to different choice of function as for example P(k) kα
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The rate equation now is (m=1)

•4C BA model (4)

1,
1

,0

1

)(
)()()1(

)(
)()()1()( k

kk

Nk
k

kkk

tM
tNktNk

tNk
tNktNk

dt
dNkP δ

α

αα

α

αα

+
−−

=
−−

== −

=

−

∑

2)(1)( ≤=≤→= αµµµα ttM

This product can be expanded in series. The result is a stretched exponential

1<<α

∏
=

−+=
kj jk

kP
,1

1)1()( αα

µµ

Sublinear case



Troisieme Cycle Suisse Romande 
Stat. Mech. of Networks-

21

•4C BA model (5)
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No analytical solution of 

1>>α Superlinear case

From recursion procedure some indication of the behaviour.
For α >2 there is one large hub + leaves

In general the number of nodes with degree larger than value j is finite
NO MORE SCALE FREE BEHAVIOUR
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Without introducing growth or preferential attachment we can have power-laws
We consider “disorder” in the Random Graph model 
(i.e. vertices differ one from the other).

This mechanism is responsible of self-similarity in Laplacian Fractals

•Dielectric Breakdown

•In reality•In a perfect dielectric

•4D Fitness Model
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1. Assign to every vertex one real positive number x that we call fitness.
fitnesses are drawn from probablity distribution ρ(x)

•4D Fitness Model: Undirected Graphs

2. Link two vertices with fitnesses x and y according to a probability
function f(x,y)=f(y,x) (choice function).

STATIC if N is kept fixed
The model can be considered

DYNAMIC if N is growing
This is a GOOD GETS RICHER model
No preferential attachment is present.

G. Caldarelli, A. Capocci, P. De Los Rios, M. A. Muñoz Phys. Rev. Lett. 89 258702 (2002).
V.D.P. Servedio, P. Buttà, G. Caldarelli ArXiv:cond-mat/0309659 (2003).
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Different realizations of the model
a) b) c) have ρ(x) power law with exponent 2.5 ,3 ,4 respectively. 
d) has ρ(x)=exp(-x) and a threshold rule. 

•4D Fitness Model
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Degree distribution for the case 
d) with ρ(x)=exp(-x) and a threshold rule. 

Degree distribution for cases
a) b) c) with ρ(x) power law with

exponent 2.5 ,3 ,4 respectively. 

•4D Fitness Model
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The Degree probability distribution P(k) is a functional of ρ(x) and f(x,y).

•4D Fitness Model: Formulation of the Problem

DIRECT PROBLEM

Given a fitness ρ(x) → which choice function f(x,y) produces scale free 

graphs? i.e. P(k) = ckα

INVERSE PROBLEM

Given a choice function f(x,y) → which fitness ρ(x) produces scale free 

graphs? i.e. P(k) = ckα
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• Fitness probability distribution

•4D Fitness Model: Useful formulas
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• Degree Correlation

•4D Fitness Model: Useful formulas
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• Vertex Clustering Coefficient
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•4D Fitness Model: Form of P(k) 
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•4D Fitness Model: Form of P(k) 

We now have a constraint on the fitness distribution ρ(x) and choice function f(x,y)
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Some exact results
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•4D Fitness Model: Exact cases

Special case  f(x,y)=g(x)g(y)
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•4D Fitness Model: Exact cases

Special case  f(x,y)=f(x+y)
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•4D Fitness Model: Form of P(k) 

Special case  f(x,y)=f(x-y)
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•4D Fitness Model: Conclusions

• Using the intrinsic fitness model it is possible to create scale-free
networks with any desired power-law exponent

• This is possible for any fitness probability distribution ρ(x), it does not 
matter if they are (e.g.) exponential, power-law or Gaussian.

• We found analytic expressions for the choice function f(x,y) in three
cases:

• f(x,y)=f(x)f(y) ρ(x),
• f(x,y)=f(x ± y) ρ(x)=e-x

• If f(x,y)=f(x)f(y) both vertex degree correlation and clustering coefficient
are constant
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•4E Data and Models

R.Albert A.-L. Barabási Statistical Mechanics of Complex Networks
Review of Modern Physics 74 47 (2002).
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•4E Data and Models

R.Albert A.-L. Barabási Statistical Mechanics of Complex Networks
Review of Modern Physics 74 47 (2002).
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•4E Future?
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•4E Future?
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•4E Future?
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•4E Future?
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Example of a network extracte
dusing the methods described
before. Top panel shows a 
pictorial representation of the 
network (1/8 of all nodes are 
shown, colored according to its
degree: yellow = 1, green = 2, 
red =3, blue=4, etc). 

The bottom panel shows the 
distribution of links plotted for
three values of the correlation
threshold. The inset depicts the 
link distribution
for an equivalent randomly
connected network.
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