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Betweenness centrality in large complex networks

M. Barthélemya
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Abstract. We analyze the betweenness centrality (BC) of nodes in large complex networks. In general,
the BC is increasing with connectivity as a power law with an exponent η. We find that for trees or
networks with a small loop density η = 2 while a larger density of loops leads to η < 2. For scale-free
networks characterized by an exponent γ which describes the connectivity distribution decay, the BC is
also distributed according to a power law with a non universal exponent δ. We show that this exponent δ
must satisfy the exact bound δ ≥ (γ + 1)/2. If the scale free network is a tree, then we have the equality
δ = (γ + 1)/2.

PACS. 89.75.-k Complex systems – 89.75.Hc Networks and genealogical trees – 05.40.-a Fluctuation
phenomena, random processes, noise, and Brownian motion

1 Introduction

In large complex networks, not all nodes are equivalent.
For example, the removal of a node can have a very dif-
ferent effect depending on the node. If the node is at a
dead-end, its removal will be without any effect in con-
trast with the case of a cut-vertex (the analog of a bridge
for edges) which removal creates new disconnected com-
ponents [1,2]. This question of the importance of nodes in
a network is thus of primary interest since it concerns cru-
cial subjects such as networks resilience to attacks [3–5]
and also immunization against epidemics [6]. In social net-
work analysis, this problem of determining the rank—or
the “centrality”—of the actors according to their position
in the social structure was studied a long time ago [7,8].
Different quantities were then defined in this context of
social networks in order to quantify this centrality. The
simplest proxy for centrality one could think of is the
connectivity. However, the inspection of a simple exam-
ple such as the one in Figure 1 shows that centrality is in
general not related to connectivity. The reason is that con-
nectivity is a local quantity which does not inform about
the importance of the node in the network. Indeed, the
node v in Figure 1 has a small connectivity and the effect
of its removal is not determined by its connectivity but by
the fact that it links together different parts of the net-
work. A good measure of the centrality of a node has thus
to incorporate a more global information such as its role
played in the existence of paths between any two given
nodes in the network. One is thus naturally led to the def-
inition of the betweenness centrality (BC) which counts
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Fig. 1. The node v has a small connectivity (only two neigh-
bors) but all shortest paths from region 1 to region 2 has to
go through v which implies a very large centrality. In fact, v is
here a cut-vertex; its removal will break the network into two
disconnected components.

the fraction of shortest paths going through a given node.
More precisely, the BC of a node v is given by [7,8]

g(v) =
∑

s�=v �=t

σst(v)
σst

(1)

where σst is the total number of shortest paths from node s
to node t and σst(v) is the number of shortest paths from s
to t going through v. In the following we will also use the
pair-dependency defined as [9]

µst(v) =
σst(v)
σst

. (2)

The betweenness centrality g scales as the number of pairs
of nodes (s �= t �= v) and some authors rescale it by
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(N − 1)(N − 2)/2 in order to get a number in the inter-
val [0, 1] (N is the number of nodes in the giant component
of the network). A naive algorithm for computing g would
lead to a complexity of order O(N3) and would thus be
prohibitive for large networks. Fortunately a rapid algo-
rithm was recently proposed [9] which reduces the com-
plexity to O(N2) allowing the computation of the central-
ity for large networks.

The definition (1) is indeed a good description of cen-
trality as can be easily seen on the example of Figure 1.
The BC of the node v is given by

g(v) = 2
∑

s∈C1,t∈C2

σst(v)
σst

(3)

= 2
∑

s∈C1,t∈C2

1 (4)

= 2N1N2 (5)

where N1(N2) is the number of nodes in region C1(C2).
The first equality comes from the fact that the term for
which s and t are in the same region does not contribute
since in this case σst(v) = 0. This results shows that al-
though v has a small connectivity, its BC defined by (1) is
large as expected intuitively. This little argument prefig-
ures the more general one about centrality for trees (see
below).

High values of the centrality thus indicates that a node
can reach others on short paths or that this vertex lies
on many short paths. If one removes a node with large
centrality it will lengthen the paths between many pairs
of nodes. The extreme case is when the node is a cut-
vertex [1,2] and its removal will then create new connected
components. This was for example used in [10] to deter-
mine recursively different communities in large networks.

There are other centrality indices based on shortest
paths linking pairs of nodes (stress, closeness, or graph
centrality [8,9]). In order to take into account the fact
that shortest paths are not always relevant, other defini-
tions were introduced such as the flow betweenness [11]
and recently a betweenness centrality based on random
walks [12]. In this work, we use the definition (1) and re-
strict ourselves to non-weighted and non-directed graphs.
This definition differs from the following one which in-
cludes the paths endpoints s and t

g̃(v) =
∑
s�=t

σst(v)
σst

(6)

(s or t can be v). It can be easily checked that

g̃(v) =
∑

s=v �=t

µst(v) +
∑

s�=t=v

µst(v) +
∑

s�=v �=t

µst(v) (7)

= 2(N − 1) + g(v). (8)

This additional term 2(N − 1) is sub-dominant since
g ∼ O(N2) and is thus negligible in the limit of large net-
works leading to the same results for both definitions (for
a typical value of the order N = 104, the relative difference

for large connectivities is negligible—of order 10−4—but
could be larger for lower k). In the following we will use
the definition (1) and rescale it by (N − 1)(N − 2)/2 so
that g ∈ [0, 1]. We will keep the same notation g for this
normalized centrality.

2 Centrality and connectivity

It has been observed [13] that large networks can be es-
sentially classified in two categories according to the decay
of the connectivity distribution P (k). The first category
comprises the “exponential networks” with a connectivity
distribution decaying faster than any power law (random
graph, Poisson graph, etc.). In contrast, the second cate-
gory is constituted by the scale-free networks which have
a probability distribution decaying as a power law char-
acterized by an exponent γ

P (k) ∼ k−γ . (9)

For these networks, there are no typical nodes since the
connectivity can vary over a large range of values. In this
sense the scale-free networks are very heterogeneous com-
pared to exponential networks for which connectivity fluc-
tuations are small.

In the following, we will investigate the BC for net-
works which are simple models representative of each
class.

2.1 Scale-free networks

In the case of scale-free networks, Goh et al. have pre-
sented a numerical study of the BC (or “load”) distri-
bution in a static scale-free network model [14]. For this
scale-free model, the exponent γ ∈]2,∞[ is a tunable pa-
rameter. They also studied the scale-free model obtained
by preferential attachment [15] for which γ = 3. They
showed that the BC is distributed according to a power-
law with exponent δ [16]

P (g) ∼ g−δ. (10)

This behavior holds for large g up to a cut-off value which
is controlled by finite-size effects. On the basis of their
numerical results, they conjectured that the value of δ is
“universal” δ � 2.2 for all values of γ ∈]2, 3]. Universal-
ity is usually invoked in physics when different systems
show the same behavior [18]. For example many of the
observed second order phase transitions have a behav-
ior which depends only on the dimension of the system
and the symmetry of the order parameter. In terms of the
renormalization group, all these systems converge to the
same fixed point of the renormalization group transforma-
tion and their critical exponents are then equal. In the case
of networks, Goh et al. [14,17] measured the exponent δ for
different real-world and in silico systems and found only
two classes [17]: Either δ � 2.2 (Class I) or δ = 2 (Class II).
According to these numerical findings, they claimed that
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Fig. 2. Cumulative function of the load for different values of
γ = 2, 2.5, and 3 (for m = 2). These results were obtained with
the same values as in [14] N = 104 and for 10 configurations.
The power law fits (straight lines) give the values δ = 1.86,
2.01 and 2.23 while for the BA model δ � 2.3.

there is “universality” and that networks could be classi-
fied according to the value of δ. This means that within a
given class, δ is independent of the details of the network
such as the mean connectivity 〈k〉 = 2m, or the expo-
nent γ.

However, the value of δ is not universal [19] and varies
significantly as γ changes in the interval [2, 3] or as m
varies. In order to see this non-universality, we first com-
puted the cumulative function F (g) = Prob(BC ≥ g) for
the model proposed in [14] and for the scale-free network
obtained by preferential attachment [15]. The results are
shown in Figure 2 and even if the variations are small, the
differences are significant enough to show that the value
of δ is not universal. However, as it can be seen in this
Figure 2 for the BA case, the power law is screened by a
cut-off which can be small due to finite-size effects.

The variations of δ obtained with F (g) are significant
enough to claim that it is not a universal exponent but in
order to double-check our results we can also use an indi-
rect way of computing δ. We study the relation between
the load and the connectivity [14,20] which is of the form

g ∼ kη (11)

where the exponent η depends on the network. This re-
lation (between two random variables) implies that for a
given value of k, the corresponding value gk of the cen-
trality is fixed. However, due to noise such as finite-size
effects, gk can have small fluctuations and we compute
the average of gk at fixed k. The result is shown in Fig-
ure 3 and as can be seen on this plot, the power law (11)
holds remarkably for a large range of k which is by it-
self a noticeable fact and which allows for an accurate
measure of η. In addition, this relation (11) allows us to
estimate the cut-off value above which the power-law (10)
does not hold. Indeed, the maximum connectivity scales
as [21] kc ∼ N1/(γ−1) which thus implies that the maxi-
mum BC scales as gc ∼ Nη/(γ−1). Finally, we also checked

Fig. 3. Log-Log plot of the normalized average load versus
connectivity for the same models as in [14] with m = 2. The
power law fits (straight lines) give η = 1.27±0.01 (N = 3×104),
1.467 ± 0.006 (N = 5 × 104), and 1.68 ± 0.02 (N = 5 × 104)
for γ = 2, 2.5, and 3 respectively. For the BA model, η =
1.81 ± 0.02 (N = 5 × 104).

that the value of η does not change significantly for differ-
ent values of the system size: For γ = 2.5, we obtain η(N =
104) = 1.461±0.005, η(N = 2×104) = 1.467±0.006, and
η(N = 5×104) = 1.467±0.006 which represents a relative
variation due to size less than 1%).

The exponents η and δ are not independent since equa-
tion (11) implies that

P (g) =
∫

dkP (k)δ(g − kη) (12)

which for large g implies a large k

P (g 	 1) ∼
∫

dkk−γδ(g − kη)

∼ g−1−γ−1
η (13)

and proves the following equality [20]

η =
γ − 1
δ − 1

. (14)

If the value of δ � 2.2 is universal then η is a linear func-
tion of γ with slope � 1/1.2 � 0.83.

In Figure 4 we plot the measured η versus γ for the
different types of networks studied and the corresponding
value predicted by universality. This Figure 4 shows that
if for γ � 3 the value δ = 2.2 seems to be acceptable,
the claim of universality for γ ∈ [2, 3) proposed in [14]
does not hold (our results do not fit in the other class
δ = 2.0 either). In addition, we tested the universality
for different values of m and we also obtain variations
ruling it out: For γ = 2.5 and for N = 2 × 104, we
obtain η = 1.477 ± 0.006, 1.56 ± 0.006, and 1.64 ± 0.01
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Fig. 4. Exponent η versus γ. If the universality proposed in [14]
would be correct, the measured values for γ ∈ [2, 3) should
lie on the “universal” straight line corresponding to δ = 2.2
(Class I).

for m = 2, 4, 6 respectively. Even if Goh et al. have re-
cently shown [22] with a variant of the BA model that for
m ∈ [1, 2], the exponent δ is close to 2.2, for models sup-
posed to be within the same universality class (BA model,
static model, etc.), the exponent δ varies with m, γ and
is therefore not universal.

We also note in Figure 4 that for larger values of γ,
the exponent η seems to converge to the value η = 2. This
seems to show that for an exponential network, formally
characterized by γ = ∞, the exponent η is equal to two.
We will discuss this fact in more details below.

Finally, the case m = 1 for the preferential attachment
is special in the sense that the obtained scale-free network
is a tree. Exact calculations in this case [17,23] show that
δ = 2 = η. We will see below that the value η = 2 is in
fact expected for any tree and that δ = 2 is the expected
value for a scale-free tree only with γ = 3.

2.2 Random graph

We have seen different examples of scale-free networks in
the previous section and we focus now on the random
graph [24,25] (often called Erdos-Renyi graph) which is
a typical example of exponential networks for which the
connectivity distribution is decaying at least as fast as
an exponential. This network is constructed as follows.
Starting from N nodes, one connects with probability p
each pair of nodes. The average final number of edges is
thus E = pN(N − 1)/2 and the average connectivity is
2E/N = p(N − 1) � pN for large graphs. More generally,
the probability that a node has connectivity k is given by
the Binomial law

p(k) =
(
N−1

k

)
pk(1 − p)N−1−k (15)

Fig. 5. Log-Log plot of the normalized average load versus
connectivity for the random graph model with N = 5 × 104

and 〈k〉 = 6). The straight line is of slope η = 2.

which converges to a Poisson law of parameter 〈k〉 for
large N and small p such that 〈k〉 = pN is fixed. We
studied the centrality for this network and in Figure 5
we plot the measured BC versus the connectivity. Even
if the connectivity is not varying over a very large range,
this plot shows that for large k we have η = 2. We will
discuss this result in more details below but we already
note that the random graph has a very small clustering
coefficient C ∼ 1/N (C counts the average fraction of
pairs of connected neighbors [26]) and that this property
could possibly be related to the fact that η = 2.

3 Discussion and analysis of the results

The results obtained above show that the exponents η
and δ are not universal and depend on the details of the
network. In particular, if the network is scale-free (tree-
like or not) δ depend on the exponent γ which describes
the power law decay of the connectivity distribution.

The important exponent appears to be η which de-
scribes how the betweenness centrality depends on the
connectivity. The “optimal” situation which maximizes
the BC for a vertex is when all shortest paths are go-
ing through it, which happens for a tree structure (ie. a
network without loops). To this optimal tree situation cor-
responds the maximum value of η = 2. In order to show
this, we first define some objects. If a vertex v has con-
nectivity k, we denote by vi (i = 1, . . . , k) its k neighbors.
Each neighbor vi defines a “neighborhood” Ci constituted
by nodes which are closer to this neighbor than to any
other one. More formally, Ci is defined as follows

Ci = {s | d(s, vi) ≤ d(s, vj) ∀j �= i}. (16)

When the equality of distances d(s, vi) = d(s, vj) is ob-
tained for some j then the node s belongs to the two
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Fig. 6. The node v has here 3 neighbors v1, v2, v3. These neigh-
bors define three different regions which are disconnected in
the case of a tree. When the intersection of these regions is not
empty, (shortest) paths between these regions which by-pass v
can exist (and are represented by the dotted line between the
regions Ci).

neighborhoods Ci and Cj . The existence of a non empty
intersection between different neighborhoods allows for
the possibility of paths by-passing the node v.

In the following we denote by Ni the size of each re-
gion Ci. In general the shortest paths from s ∈ Ci to
t ∈ Cj go through v or avoid v by using paths on nodes
belonging to Ci ∩Cj (see Fig. 6). If the two nodes s and t
belong to the same neighborhood, say Cl, there is always
a shortest path within Cl (in the worst case the shortest
path goes through vl but not through v) and therefore

µst(v) = 0 if s, t ∈ Cl. (17)

In terms of these neighborhoods Ci, the BC can be rewrit-
ten as

g(v) =
∑

s�=v �=t

µst(v) (18)

=
∑
i�=j

∑
s∈Ci,t∈Cj

µst(v) (19)

(the term i = j gives zero).
For a tree, these regions Ci are disconnected one from

the other and the BC can then be rewritten as

g(v) ∼
∑
i�=j

NiNj . (20)

If in addition these different parts are of the same order
of magnitude Ni � N0 (which is similar to a statistical
isotropy condition) we obtain

g(v) ∼ N2
0 k(k − 1) (21)

which for large k behaves as k2 leading to the value η = 2.
Obviously, the “isotropy” condition Ni � const. is nec-
essary and if it is not satisfied then the preceding argu-
ment does not apply [27]. We note that an exactly solv-
able model for which this assumption is satisfied is the

tree graph obtained with the BA model with m = 1 and
where one indeed finds η = 2 [17]. The tree situation max-
imizes the BC since all shortest paths are going through
the node v. In any other cases, the centrality will be less
and the maximum possible value of η is 2. More generally,
if for a network the density of loops is small enough such
that most shortest paths which go from Ci to Cj have to
go through v then we obtain η = 2. This is the case for
trees but also for random graphs for which the clustering
is small ∼ 1/N .

If in addition to be a tree, the network is scale-free
we can use the relation (14) which together with η = 2
leads to

η = 2 ⇒ δ =
γ + 1

2
. (22)

This relation in particular implies that for the scale-free
BA network with m = 1 and γ = 3, we obtain δ =
(γ + 1)/2 = 2 in agreement with previous results [17,23].
It should be noted that in both these papers [17,23] the
authors demonstrate that δ = 2 in the specific case of pref-
erential attachment. However, in [17], the authors claim
that their result is valid for any scale-free tree with γ > 2.
This is an incorrect statement since their derivation is only
valid for preferential attachment and in general δ depends
on γ as predicted by equation (22).

On the other hand—and this is the second possible
category of networks—if there is a significant fraction of
shortest paths which by-pass v then the exponent η will
be less than 2. If the network is scale-free then we can use
the relation (14) which together with η < 2 leads to the
exact bound

η < 2 ⇒ δ >
γ + 1

2
. (23)

The quantity 2− η is thus a measure of the density of
loops in the network. The fact that η < 2 indicates that
the different parts are also connected by shortest paths
which do not pass through the central node. More gener-
ally, it would be interesting to understand how η depends
on the different parameters of the network such as γ, the
clustering coefficient, the loop density, the “anisotropy”,
or any other correlation function.

In summary, it seems that concerning the betweenness
centrality, we can distinguish two main categories. For the
first one which comprises the trees and tree-like networks
(clustering almost zero, density of loops very small), we
have η = 2. If in addition, the tree is scale-free with ex-
ponent γ, we have the relation δ = (γ + 1)/2. The second
category comprises the networks for which the density of
loops is large enough so that the networks are very dif-
ferent from trees. In this case, the exponents δ, η—when
they exist—are not universal and depend on the differ-
ent details (average connectivity, correlations, etc.). If this
“clustered” network is scale-free with exponent γ, the ex-
ponent δ must obey an exact bound (Eq. (23)). Although
we believe that the present picture is the correct one, fur-
ther studies are still necessary to understand which are
exactly the parameters which control the behavior of η.
In this respect, analytical insights would be particularly
valuable.
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