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Abstract. In this paper we present an experimental study of the properties of web graphs. We study a
large crawl from 2001 of 200M pages and about 1.4 billion edges made available by the WebBase project
at Stanford [17]. We report our experimental findings on the topological properties of such graphs, such
as the number of bipartite cores and the distribution of degree, PageRank values and strongly connected

components.

PACS. 89.20.Hh World Wide Web, Internet — 89.75.Fb Structures and organization in complex systems

1 Introduction

The Webgraph is the graph whose nodes are (static) Web
pages and edges are (directed) hyperlinks between pages.
The study of the Webgraph has recently attracted a large
interest in the scientific community, primarily motivated
by the developing of innovative Web search technologies.
The analysis of the link structure of the Web is indeed at
the basis of important algorithms such as PageRank [3]
and HITS [8] for ranking Web documents returned by a
query to a search engine.

The research in this area has primarily focussed on
the study of the statistical and topological properties of
the Webgraph through the experimental analysis of large
crawls of the Web. This analysis has shown the ubiqui-
tous presence of power law distributions in he Webgraph,
considered by statistical physicists as a typical signature
of the presence of scale-free properties in the structure.
The first observation of this nature was made by Barabasi
and Albert [2] and by Kumar et al. [10] that studied the
distribution of the indegree of the Webgraph. This obser-
vation has been confirmed by several later experiments,
as for example Broder et al. [4] on a crawl of 200 M pages
from 1999 by Altavista. More formally, the probability
that the indegree of a vertex is ¢ is distributed as Pry[in-
degree(u)= i]Jox 1/i7, for v = 2.1. In [4], the outdegree of
a vertex was also shown to be distributed according to a

* Partially supported by the Future and Emerging Technolo-
gies programme of the EU under contracts number IST-2001-
33555 COSIN “Co-evolution and Self-organization in Dynam-
ical Networks” and IST-1999-14186 ALCOM-FT “Algorithms
and Complexity in Future Technologies”, and by the Italian
research project ALINWEB: “Algorithmica per Internet e per
il Web”, MIUR — Programmi di Ricerca di Rilevante Interesse
Nazionale.

? e-mail: laura@dis.uniromal.it

power law with exponent roughly equal to 2.7 with the
exception of the initial segment of the distribution. The
number of edges observed in the samples of the Webgraph
is about equal to 7 times the number of vertices.

A second important research line has concentrated on
the development of new probabilistic models able to gen-
erate synthetic graphs holding the properties observed in
practice. These properties cannot be recognized in the
classical random graph model of Erdés and Rényi (ER) [7]
that for instance does not show any power law distribution
on the degree. Moreover, the ER model is a static model,
while the Webgraph evolves over time when new pages are
published or are removed from the Web.

Albert, Barabasi and Jeong [1] initiated the study of
random evolving networks by presenting a model in which
at every discrete time step a new vertex is inserted in the
graph. The new vertex connects to a constant number
of previously inserted vertices chosen according to the so
called preferential attachment rule, i.e. with probability
proportional to the in-degree. This model shows a power
law distribution on the in-degree of the vertices with ex-
ponent roughly equal 2, when the number of edges that
connect every vertex to the graph is 7.

Broder et al. [4] presented a fascinating picture of the
Web’s macroscopic structure, a bow-tie shape composed of
5 main regions including a large strongly connected com-
ponent (SCC) spanning about 28% of the vertices. The
study of a large sample from Alexa has also shown the ex-
istence of a surprising large number of dense subgraphs,
specifically bipartite cliques, of moderately small size [10].
The study of such structures was aimed to trace the emer-
gence of hidden cyber-communities. A bipartite clique is
interpreted as the core of a community interested in a spe-
cific subject, defined by a set of fans, all pointing to a set
of centers/authorities, and the set of centers, all pointed
to by the fans. Over 100,000 such communities have been
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recognized [10] on a sample of 200 M pages crawled by
Alexa in 1997.

The Copying model has later been proposed by Kumar
et al. [9] in the attempt to model the formation in the We-
bgraph of a large number of bipartite cliques. The Copy-
ing model selects a random prototype vertex p for every
new vertex entering the graph. A constant number d of
links connect the new vertex to previously inserted ver-
tices. The model is parameterized on a copying factor .
The end-point of a link is either copied with probability
«a from a link of the prototype vertex p, or it is selected
at random with probability 1 — a.

As pointed out at the beginning of this paper, the ana-
lysis of the linked structure of the Web is at the basis
of important Web search algorithms such as the popu-
lar PageRank algorithm introduced by Brin and Page [3].
This algorithm has a simple interpretation in terms of
a random walk in the Webgraph. Assume the walk has
reached page p. The walk then continues either by follow-
ing with probability 1 — ¢ a random link in the current
page, or by jumping with probability ¢ to a random page.
The rank of every page is given by the probability that
the random walk stops at that specific page.

The correlation between the distribution of PageR-
ank and in-degree has been studied by Pandurangan,
Raghavan and Upfal [15] motivated by the fact that
PageRank is considered a much better strategy than sim-
ply ranking pages by indegree. They showed, by analyzing
a sample of 100,000 pages of the brown.edu domain, that
PageRank and in-degree are similarly distributed with a
power law of exponent 2.1. However, it has been observed
very little correlation between the two distributions, i.e.,
pages with high in-degree may well have low PageRank.

Recently Panduragan, Raghavan and Upfal [15] pro-
posed a model that complements the Evolving Network
model [1] by choosing the endpoint of a link with proba-
bility proportional to the in-degree and to the PageRank
of a vertex. The authors show by computer simulation
that with an appropriate fitting of the parameters the
graphs generated capture the distributional properties of
both PageRank and in-degree.

More generative models for the Webgraph have been
presented in literature [5,11,15,16]. We refer to [14] for
an excellent survey of models generating graphs holding
power law distributions.

Outline of the paper

In this paper we report an extensive study of the sta-
tistical properties of the Webgraph by analyzing a crawl
of about 200 M pages collected in 2001 by the WebBase
project at Stanford [17] and made available for our study.
We briefly present our sample in Section 2, and the ex-
perimental findings on its structure are presented in the
following sections.

More specifically, we report in Section 3 on the study of
the in-degree and the out-degree, in Section 4 on the values
computed by PageRank, and in Section 5 we present the
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Fig. 1. In-degree distribution of the Web Base crawl.

study of the bipartite cores of our sample. All frequency
distributions are plotted on a loglog scale. We conclude in
Section 6 with the study of the Bow-Tie structure and of
the strongly connected components of the Webgraph.
This work has required the development of several soft-
ware tools for computing statistical and topological prop-
erties of very large graphs. A detailed description of the
software tools developed within this project is in [12].

2 The WebBase crawl

We conducted our experiments on a 200 M nodes crawl
collected from the WebBase project at Stanford [17] in
2001. The repository makes several crawls available to
researchers. The sample we study in our work contains
only link information, i.e. no information about URLs is
available. There are no recent estimates about the size of
the web, but a study made by Cyvellance [6] showed that
in July 2000 the web reached 2.1 billion webpages, and
the number is growing 7 million pages each days. This
means that the WebBase sample, when it was collected,
contained about one tenth of the web.

3 In-degree and out-degree

We recall that the in-degree (out-degree) of a node is the
number of entering (leaving) edges. For example, if we
refer to the simple directed graph shown in Figure 3 the
in-degree of vertex C is 2 (it is linked from A and B) while
its out-degree is 1 (it links node D).

The in-degree distribution, shown in Figure 1, follows
a power law with v = 2.1. This confirms the observations
done on the crawl of 1997 from Alexa [10], the crawl of
1999 from Altavista [4] and the notredame.edu domain [2].

We note a bump between the values 1.000 and 10, 000,
that has also been observed by Broder et al. [4] and it is
probably due to a huge clique created by a single spammer.
Since our sample contains only structural information and
not URLs, we can’t propose or deny possible explanations
for this phenomena.
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Fig. 2. Out-degree distribution of the Web Base crawl.

In Figure 2 it is shown the out-degree distribution of
the WebBase crawl. While the in-degree distribution is
fitted with a power law, the out-degree is not, even for
the final segment of the distribution. A deviation from
a power law for the initial segment of the distribution
was already observed in the Altavista crawl [4]. A possible
explanation of this phenomena is that writing a scale-free
series of hyperlinks is seriously limited by the patience of
webmasters.

4 PageRank

The PageRank algorithm is at the basis of the ranking op-
erated by the Google Web search engine. The idea behind
link analysis ranking is to give higher rank to documents
pointed by many Web pages. Brin and Page [3] extend
this idea further by observing that links from pages of
high quality should confer more authority. It is not only
important which pages point to a page, but also what is
the quality of the pages. They propose a weight propaga-
tion algorithm in which a page of high quality is a page
pointed by many pages of high quality.

The PageRank algorithm performs a random walk on
the graph G that simulates the behavior of a “random
surfer”. The surfer starts from some node chosen according
to some distribution, usually the uniform distribution. At
each step the surfer proceeds as follows: with probability
1 — ¢ an outgoing link is picked uniformly at random, and
the surfer moves to a new page, and with probability ¢
the surfer jumps to a random page chosen accordingly to
some distribution, usually the uniform distribution. The
authority weight Rank(i) of a node i (called the page rank
of node i) is the fraction of time that the surfer spends at
node 1.

More formally, the computation of PageRank is (ex-
pressed in matrix notation) as follows. Let N be the num-
ber of vertices of the graph and let n(j) be the out-degree
of vertex j. Denote by M the square, stochastic matrix
whose entry M;; has value 1/n(j) if there is a link from
vertex j to vertex i. Denote by [%]NxN the square ma-
trix of size N x N with entries % Vector Rank stores the
value of PageRank computed for the NV vertices. A matrix
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Fig. 3. A directed graph.

100000000
10000000 4~
1000000

100000
10000 +
1000 +
100 +

number of vertices

10

1 T
1,00E-09  1,00E-07

— T T

1,00E-05 1,00E-03 1,00E-01
pagerank value

Fig. 4. PageRank distribution of the Web Base crawl.

1,00E+01

M’ is then derived by adding transition edges of probabil-
ity (1 — ¢)/N between every pair of nodes to include the
possibility of jumping to a random vertex of the graph:

M’cMJr(lc)x{i} :
NxN

A single iteration of the PageRank algorithm is

1
M' x Rank = ¢cM x Rank + (1 —¢) x [—] :
Nx1

The matrix M’ is the matrix of the Markov chain
that corresponds to the random walk performed by the
PageRank algorithm. The addition of the jump matrix
guarantees that the Markov chain is irreducible and ape-
riodic, then there is an equilibrium steady state distribu-
tion for the states of the Markov chain. The PageRank is
the stationary distribution of the Markov chain, that is
the left eigenvector of the matrix M’.

We computed the PageRank distribution on the Web-
Base crawl, as shown in Figure 4. Here, we confirm the
observation of [15] by showing this quantity distributed
according to a power-law with exponent v = 2.109. We
also computed the statistical correlation between PageR-
ank and in-degree. We obtained a value of —5.1877F — 6,
on a range of variation in [—1, 1] from negative to positive
correlation. This confirms on much larger scale the obser-
vation done by [15] on the brown.edu domain of 100,000
pages, that the correlation between the two measures is
very weak.
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Fig. 5. A (3,4) bipartite clique.

5 Bipartite cliques

As we mentioned in the introduction, a large number of
bipartite cliques in the web has been observed in [10]. A
simple bipartite clique is shown in Figure 5: we have on
the left side the set of the fan nodes (labelled A, B and C),
all of them pointing to all center nodes on the right side
(labelled X, Y, W and Z).

In Figure 6 the graphic of the distribution of the num-
ber of bipartite cliques (i, j), with 4, j = 1,..., 10 is shown.
The shape of the graphic follows that one presented by
Kumar et al. [10] for the 200M crawl by Alexa. However,
we detect a much larger number of bipartite cliques. For
instance the number of cliques of size (4, j) differs from the
crawl from Alexa for more than one order of magnitude.
A possible (and quite natural) explanation is that the
number of cyber-communities has consistently increased
from 1997 to 2001. We also recall that the longevity of
cyber-communities’ website is bigger as compared to other
websites [10]. A second possible explanation is that our
algorithm for finding disjoint bipartite cliques, which is
explained in [13], is more efficient than the one imple-
mented in [10]. We will try to get access to the Alexa
sample [10] and execute on it our algorithm for disjoint
bipartite cliques.

6 Strongly connected components

In a directed graph we say that a set of nodes S is a
strongly connected component (scc) if and only for every
couple of nodes A, B € S there exists a directed path from
A and B and from B to A. The number of nodes of S is
the size of the scc. For example, in the graph shown in Fig-
ure 7, there are 3 distinct strongly connected components,
respectively of size 4,3 and 2.

Broder et al. [4] identified a very large strongly con-
nected component of about 28% of the entire crawl, and
shown a picture of the whole Web as divided in five dis-
tinct regions: SCC, IN, OUT, TENDRILS and DISCON-
NECTED. The SCC set is the set of all the nodes in
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Fig. 6. Number of bipartite cores in the Web Base crawl.

Fig. 7. An example of strongly connected components of a
graph.

Table 1. Size of regions in both Altavista and WebBase crawl.

SCC IN OUT TENDR. DISC.
Altavista
(1999) 4] 28% 21% 21% 22% 9%
WebBase
(2001) 33% 11%  39% 13% 4%

the single large strongly connected component; in the IN
(OUT) region we find all the nodes that can reach the
SCC set (are reached from the SCC). TENDRILS are ei-
ther nodes that leave the IN without entering the SCC
or enter the OUT without leaving the SCC. In Table 1
we report the relative size of the 5 regions. We can still
observe in the WebBase crawl a large SCC, however the
biggest component is the OUT region, and both IN and
TENDRILS have a reduced relative size if compared to
the Altavista crawl. We also observe a huge difference
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Fig. 8. SCC distribution of the Web Base crawl.

between the size of the largest SCC of about 48 millions
nodes, and the size of the second largest scc that is less
than 10 thousands nodes.

In Figure 8 it is shown the scc distribution of the Web-
base sample and of the different regions (of course the SCC
region is a single scc). All distributions follow a power law
whose exponent is 2.07, very close to the value observed
for both the in-degree and the PageRank distribution.

7 Conclusions

In this work we have presented an experimental analysis of
the statistical and topological properties of a large sample
of the Webgraph. We plan in the near future to compare
these results with the ones obtained on more recent crawls
of the Webgraph in order to assess the temporal evolution
of its topological properties.

We are very thankful to the WebBase project at Stanford and
in particular Gary Wesley for their great cooperation. We also
thank James Abello, Guido Caldarelli, Paolo De Los Rios,
Camil Demetrescu and Alessandro Vespignani for several help-
ful discussions.
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