
Journal of Theoretical Biology 229 (2004) 1–11

ARTICLE IN PRESS
*Correspond

que Statistique

Lausanne, CH

fax: +41-21-69

E-mail addr

(T. Petermann)

0022-5193/$ - se

doi:10.1016/j.jtb
Cluster approximations for epidemic processes:
a systematic description of correlations beyond the pair level

Thomas Petermann*, Paolo De Los Rios

Institut de Physique Th!eorique, Universit !e de Lausanne, CH-1015, Lausanne, Switzerland

Received 8 August 2003; received in revised form 15 February 2004; accepted 17 February 2004
Abstract

The spread of a virus is an example of a dynamic process occurring on a discrete spatial arrangement. While the mean-field

approximation reasonably reproduces the spreading behaviour for topologies where the number of connections per node is either

high or strongly fluctuating and for those that show small-world features, it is inaccurate for lattice structured populations. Various

improvements upon the ordinary pair approximation based on a number of assumptions concerning the higher-order correlations

have been proposed. To find approaches that allow for a derivation of their dynamics remains a great challenge. By representing the

population with its connectivity patterns as a homogeneous network, we propose a systematic methodology for the description of

the epidemic dynamics that takes into account spatial correlations up to a desired range. The equations that the dynamical

correlations are subject to are derived in a straightforward way, and they are solved very efficiently due to their binary character.

The method embeds very naturally spatial patterns such as the presence of loops characterizing the square lattice or the tree-like

structure ubiquitous in random networks, providing an improved description of the steady state as well as the invasion dynamics.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The spreading dynamics of an infectious disease is
determined by the connectivity patterns which underlie
the population. Followed by the renewed interest in
graph theory witnessed by statistical physics in recent
years (Albert and Barab!asi, 2002; Dorogovtsev and
Mendes, 2002), substantial progress has been achieved
in the field of epidemiology. Possible contact networks
such as the Internet or the web of human sexual contacts
obey a scale-free degree distribution, meaning that the
number of connections per node (i.e. the degrees) are
distributed according to a power law (Faloutsos et al.,
1999; Liljeros et al., 2001). Pastor-Satorras and Ves-
pignani (2001) showed that it is this topological property
which accounts for the absence of a finite epidemic
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threshold in the corresponding spreading phenomenon,
and only targeted immunization causes this value to be
non-zero (Barab!asi et al., 2003).

The just mentioned epidemiological insights were
gained at the mean-field level, a description which does
not take into account dynamical correlations. If the
connectivity fluctuations of the underlying network are
large, this being the case in the above examples, or for
topological arrangements characterized by a high
average degree, correlations of this type are indeed very
weak. Furthermore, this approximation yields fairly
reasonable predictions for small-world networks, in
which any two nodes are only a few links apart from
each other (Watts and Strogatz, 1998). Quite often
however, e.g. in a population arranged on a lattice,
spatial correlations can no longer be ignored. Matsuda
et al. (1992) first used the ordinary pair approximation
for the treatment of a population biological problem,
and the resulting improvements are considerable. In
addition to the analytical tractability of this approxima-
tion, simple estimates for the epidemic threshold can be
obtained in terms of a ‘‘dyad heuristic’’: a condition for
the location of the critical point is elaborated by looking
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Fig. 1. Construction of a homogeneous random network of degree

K ¼ 4 and size N ¼ 16: The nodes are connected randomly and its

number of emanating edges are constrained to be K ¼ 4; not allowing

multiple connections and self-loops.
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at two neighbouring infected sites, comparing its
recovery with the infections it gives rise to (Durrett
and Levin, 1996).

Various extensions upon the standard pair approx-
imation have been proposed. In order to analyse the
propagation of a wave-like invasion in a lattice
structured population, a remarkable improvement is
brought about if the region occupied by the infected
individuals is described by the ordinary pair approxima-
tion, and the leading edge of the wave front is modelled
by the quasi-steady-state pair approximation (Ellner
et al., 1998). Bauch and Rand (2000) developed a pair
model for the situation where the population’s under-
lying connectivity patterns are of a dynamic nature.

The grid-like structure or the presence of triangles are
topological properties which both the mean-field and
the standard pair approximations do not account for.
An approach pursued by different authors is to use
parameters that characterize the topology (such as the
density of triangles) and to make a number of
assumptions about the corresponding higher-order
correlations, which leads to improved pair models.
Van Baalen (2000) illustrates this method for the
triangular and square lattices, if the higher-order
correlations are set to 1. The invasion dynamics is
reproduced very accurately. The same strategy can be
explored for less homogeneous networks (Keeling et al.,
1997), and the consequences regarding epidemiological
invasions have been discussed in detail (Keeling, 1999).
The improved pair approximation (Sato et al., 1994;
Sato and Iwasa, 2000) takes into account the clustering
property of lattice models more precisely. Its key
ingredient is to make less restrictive assumptions about
the higher-order correlations, e.g. they can be set to a
value not equal to 1.

Morris (1997) derived the dynamics of higher-order
correlations in the usual vein, i.e. an equation which
determines the time evolution of an average quantity is
used as point of departure.

In this paper, we introduce a novel method for
the description of the epidemic dynamics which
takes into account spatial correlations up to a desired
range. The methodology is illustrated for the case
where the population is arranged on a homogeneous
network. Concerning the local contact process, we
use a susceptible-infected-susceptible model involving
transition rates between the two possible states (e.g.
Diekmann and Heesterbeek, 2000; Durrett and Levin,
1994). The formalism is elaborated in discrete time, and
the continuous-time dynamics arises as a limiting case.
This limit has been performed in order to allow for a
comparison with the above sketched approaches.

The paper is organized as follows. In Section 2, the
adopted model involving the local dynamics as well as
the selected geometries are described in detail. Section 3
reviews the mean-field and pair approximations, intro-
duces our formalism and explains how these approx-
imations are recovered. In Section 4, the method is
illustrated for a random homogeneous network, the
triangular and square lattices. Section 5 offers a
discussion of the results as well as some suggestions
for further investigations.
2. The model

Our approach conceives the population as a network,
with connections between individuals that do not change
in the course of time. Each node of the network
represents an individual, and every link symbolizes a
relationship between individuals that involves repeated
contacts, and therefore the transmission of an infective
agent proceeds along connections. As the aim of this
paper is the introduction of a methodology that system-
atically takes into account higher-order correlations, we
adopt the simple susceptible-infected-susceptible model
and focus on networks where every node has the same
number of nearest neighbours. Despite the homogeneity
of these graphs, there exist several classes of such
networks differing in topological properties beyond the
degree distribution. We shall oppose the regular square
lattice to the case where the underlying contact structure
is fully random, furthermore our approximation scheme
is illustrated for a triangular lattice. The generalization
to the SIR- or SEIR-models, where the individuals can
be in 3 or even 4 possible states, is straightforward.

A homogeneous random network of degree K and
size N is constructed as follows (Fig. 1). To each of the
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N vertices, K ends of edges are attached. The free ends
are then connected at random, such that multiple
connections and self-loops are avoided. This procedure
leads to networks consisting of only one component for
KX3; in agreement with Newman et al. (2001).

The time evolution of the states of the vertices are
given by the following rules. Infected nodes recover
spontaneously at a rate d: On the other hand, an infected
individual can infect any of its K nearest neighbours at a
rate n: Since what matters is the ratio of the transmission
and recovery rates, we can reduce the number of
parameters by rescaling the time unit. Thus without
loss of generality, the local dynamics is determined by
the recovery rate 1 and the effective spreading rate l ¼
n=d: In Section 3, we will elucidate how this continuous-
time model is recovered as a limiting case from a more
general discrete-time description.
1 4

2 5

3 6

A B

Fig. 2. An arbitrarily chosen link and its nearest neighbourhood

within a homogeneous network characterized by the degree distribu-

tion PðkÞ ¼ dk4: The dashed lines indicate the connections which are

present in the case of a square lattice.
3. Revisiting the mean-field and pair approximations

In this section, we first review the mean-field and
standard pair approximations. These descriptions are
obtained by a rate equation which determines the time
evolution of some average quantity such as the density
of infected individuals or the density of pairs of infected
individuals. Up to the level of pair correlations, this is
indeed a reasonable approach. But if one wants to keep
track of higher-order correlations (e.g. the density of
plaquettes of four infected nodes in the case of the
square lattice), a more general starting point reveals
itself as advantageous. In Section 3.2, we derive an exact
description of the epidemic dynamics and show how
the mean-field and standard pair approximations are
recovered in a rather automatic way in part C of this
section. The various higher-order approximations are
elaborated thereafter.

3.1. Conventional approach

The rate of change of an average quantity f (such as
the fraction of sites in a particular state) is described as

’f ¼
X
xAX

X
exAEx

rðexÞð fex
� f Þ; ð1Þ

where X is the set of all sites, and Ex represents the set of
all events that can occur at x: A particular event ex

changes the average from f to fex
and occurs at rate rðexÞ

(Van Baalen, 2000).
The SIS-model allows for two possible states, namely

susceptible (0) and infected (1). At the mean-field level,
the dynamics is described in terms of the density of
infected individuals r1; and the fraction of susceptible
nodes obeys r0 ¼ 1 � r1: Eq. (1) translates into

’r1 ¼ �r1 þ lKr0r1: ð2Þ
The first term accounts for infected nodes becoming
healthy whereas the second term describes the new
infections, fully ignoring pair correlations.

In the framework of the standard pair approximation
(Matsuda et al., 1992), the dynamics is described in
terms of the doublet densities rxy ðx; yAf0; 1gÞ; this
quantity corresponds to the probability that a randomly
chosen pair is in configuration ðxyÞ: They are related to
the global densities rx and local densities (conditional
probabilities) rx j y by: rxy ¼ ryx ¼ rxry j x ¼ ryrx j y:
The global and local densities satisfy

X1

x¼0

rx ¼ 1 and
X1

x¼0

rx j y ¼ 1 for any yAf0; 1g:

Eq. (1) tells that the density of infected individuals and
the doublet density r11 evolve in time according to

’r1 ¼ �r1 þ lKr0j1r1;

’r11 ¼ �2r11 þ 2lr10 þ 2lðK � 1Þr1j01r10: ð3Þ

The first of Eq. (3) can also be regarded as the result of
substituting r0 by r0j1 in Eq. (2), i.e. the susceptible node
that is to be infected has to be a nearest neighbour of the
vertex which will transmit the infective agent. The
second of Eq. (3) includes a recovery term (the first term
on the right-hand side, destruction of (11)-pairs) and
transmission terms (the second and the third terms,
creation of (11)-pairs). The first term describes transi-
tions of pairs in state (11) to either (10) or (01). Both
transitions occur at rate 1 (the recovery rate) and thus
give rise to the factor 2. The factor 2 in the second and
the third terms is needed because we do not assume any
asymmetry between sites, which means r10 ¼ r01: A
(11)-pair can be created from a (10)-pair either if the
infective agent proceeds along the connection within
that pair (second term) or if the susceptible node is
infected by one of the other K � 1 nearest neighbours of
it (third term, see also Fig. 2). This path involves the
conditional probability r1j01 (i.e. the probability of
finding an infected node adjacent to a (01)-pair) which
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Fig. 3. Epidemic spreading on homogeneous networks of degree 4.

The average number of infected individuals r (prevalence) as a

function of the inverse infection rate 1=l in the steady state is shown.

The simulation result for the square lattice (squares) was obtained by

relaxing the system (of size N ¼ 104) into equilibrium for 10 different

initial configurations, henceforth this shall be referred to as the number

of iterations. In the case of the random network (circles), we further

averaged over 10 realizations of networks consisting of N ¼ 105 nodes.

The adopted timestep was Dt ¼ 0:01 for both examples. This figure

shows that the simulations exhibit higher epidemic thresholds with

respect to the approximations. The mean-field description (dotted line)

yields lc ¼ 1
4

whereas the pair approximation (dashed line) leads to

lc ¼ 1
3

for the epidemic threshold. The latter is also in better agreement

with the simulation results for 1=l-0:
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is approximated by r1j0 as in the ordinary pair
approximation, and only nearest-neighbour correlations
are taken into account. In order to solve Eq. (3), the
system has to be closed. The set r1;r1j1 is a suitable
choice but r11; r10 works equally well.

Fig. 3 contrasts the solutions of Eqs. (2) and (3) with
the simulations for two different homogeneous networks
of degree K ¼ 4; i.e. the square lattice and the one
introduced in Fig. 1. The pair approximation provides a
rather good description of the equilibrium dynamics on
top of a random homogeneous network, whereas the
deviation from the simulation result is remarkable if the
population is arranged on a square lattice whose
topology is characterized by the presence of many loops
of short length.

We shall now develop a more general formalism that
will serve as a starting point in order to investigate the
role of correlations beyond the pair level.

3.2. Exact description

In order to arrive at a more general point of departure
which will allow us to investigate the role of higher-
order spatial correlations, we shall describe the system
by assigning a probability PtðxÞ to every possible
configuration x at a given time t where each of the
x0

is can be either 0 (susceptible) or 1 (infected). This
probability is subject toX
x

PtðxÞ ¼ 1

at every instant of time. The SIS model introduced in
Section 2 implies that: (i) infected nodes recover with
probability Dt and (ii) they can infect any susceptible
nearest neighbour with probability lDt: Clearly, l and
Dt must be chosen such that the resulting probabilities
are smaller than 1. For the possible events that can
occur at an arbitrary site l; we obtain the following
transition probabilities:

W l
1-0 ¼ Dt; W l

0-0 ¼
Y
jnnl

ð1 � lDtyjÞ;

W l
1-1 ¼ 1 � Dt; W l

0-1 ¼ 1 �
Y
jnnl

ð1 � lDtyjÞ;

where the products have to be taken over the nearest
neighbours of site l: By using the binary variable xl in
addition to yl ; the above expressions are summarized as

W l
yl-xl

¼ xl þ ð1 � 2xlÞ Dtyl þ ð1 � ylÞ
Y
jnnl

ð1 � lDtyjÞ

" #
: ð4Þ

If the total number of nodes is denoted by N; the
transition probability that the system changes from
configuration y to x can be written as

Wy-x ¼
YN
l¼1

W l
yl-xl

ð5Þ

and on an exact level, the epidemic dynamics is governed
by

PtþDtðxÞ ¼
X
y

Wy-xPtðyÞ ð6Þ

with Wy-x given by Eq. (5). Eq. (6) will serve as a
starting point for various approximations, be it in
discrete or continuous time. In the latter case, only the
terms up to order 1 in Dt have to be taken into account,
but this limit shall be carried out later on. As most of the
existing methods are formulated in continuous time, we
will elaborate the approximations for this case in order
to allow for a comparison.

3.3. Derivation of the mean-field and pair approximations

Within this subsection, it is shown how approxima-
tions (2) and (3) are recovered from the exact
description (6).

At the mean-field level, the dynamics is expressed in
terms of the density of infected individuals. This
quantity corresponds to the probability that an arbi-
trarily chosen site i is in state xi ¼ 1: In order to derive
its time evolution, we sum Eq. (6) over all possible
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configurations, xi held fixedX
fxjgjai

PtþDtðxÞ ¼
X
y

PtðyÞ
X
fxjgjai

Wy-x

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
W i

yi-xi

: ð7Þ

The left-hand side of the above equation is PtþDtðxiÞ; i.e.
the probability that site i is in state xi at time t þ Dt: The
mean-field approximation consists in considering the
sites as independent from each other, i.e.

PtðyÞ ¼
YN
l¼1

PtðylÞ; ð8Þ

which corresponds to the homogeneous mixing hypoth-
esis. Performing the summations, we find for xi ¼ 1

PtþDtð1Þ ¼ 1 � DtPtð1Þ � Ptð0Þ½1 � lDtPtð1Þ�K ; ð9Þ

whose continuous-time limit (Dt-0) is

’Pð1Þ ¼ �Pð1Þ þ lKPð0ÞPð1Þ;

which is easily identified with Eq. (2) since Pð1Þ ¼ r1

and Pð0Þ ¼ r0:
Let us now see how the pair approximation is

obtained by using our formalism. For this purpose, we
sum Eq. (6) over all possible configurations, xA and xB

held fixed, where A and B are the two sites of an
arbitrarily chosen pairX
fxigiefA;Bg

PtþDtðxÞ ¼
X
y

PtðyÞ
X

fxigiefA;Bg

Wy-x

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
W A

yA-xA
W B

yB-xB

: ð10Þ

The left-hand side of the above equation corresponds to
the probability that the pair AB is in state ðxAxBÞ at time
t þ Dt; which shall be denoted by PtþDtðxAxBÞ: By
adopting the enumeration introduced in Fig. 2, we
obtain from Eq. (4) for the transition probability
ðyAyBÞ-ðxAxBÞ

W A
yA-xA

W B
yB-xB

¼ tAtB þ Dtð1 � 2xAÞ½yA � lð1 � yAÞ

� ðyB þ y1 þ y2 þ y3Þ�tB

þ Dtð1 � 2xBÞ½yB � lð1 � yBÞ

� ðyA þ y4 þ y5 þ y6Þ�tA; ð11Þ

where the linearization has been carried out at this point
due to technical convenience and

ti ¼ tiðxi; yiÞ  xi þ ð1 � 2xiÞð1 � yiÞ; ð12Þ

an abbreviation which will also be used below.
Furthermore, expression (11) only involves state vari-
ables yi where i is either A;B or one of its nearest
neighbours. The sum over the remaining yj is therefore
carried out trivially. Taking into account correlations up
to range 2 only, we write for the probability that the pair
AB and its nearest neighbours are in given states

Pt

y1 y4

y2 yA yB y5

y3 y6

0
B@

1
CA

¼ PtðyAyBÞPtðy1 j yAÞPtðy2 j yAÞPtðy3 j yAÞ

� Ptðy4 j yBÞPtðy5 j yBÞPtðy6 j yBÞ: ð13Þ

The conditional probabilities in the above ansatz are
expressed as

Pðyi j yAÞ ¼
PðyiyAÞ
PðyAÞ

;

where PðyAÞ ¼
P1

x¼0 PðxyAÞ: Using this ansatz and
performing the remaining summations, the continuous-
time-limit of Eq. (10) leads to the system (for general K)

’Pð00Þ ¼ 2Pð10Þ 1 � lðK � 1Þ
Pð00Þ
Pð0Þ

� �
;

’Pð10Þ ¼ Pð11Þ � Pð10Þ þ lPð10Þ 2ðK � 1Þ
Pð00Þ
Pð0Þ

� K

� �
;

’Pð11Þ ¼ �2Pð11Þ � 2lPð10Þ ðK � 1Þ
Pð00Þ
Pð0Þ

� K

� �
: ð14Þ

By identifying the pair probabilities PðxyÞ with the
doublet densities rxy and since r00=r0 ¼ 1 � r10=r0; the
system of Eqs. (14) corresponds to Eqs. (3).

In summary, in the standard derivation of the mean-
field and pair approximations based on Eq. (1), the rate
of change of an average density is directly expressed by
all different events that can alter its value in a rather
heuristic way (Eqs. (2) and (3)). On the other hand, the
derivation of the approximations becomes an automatic
procedure involving:

* an initial summation of the system probability
PtþDtðxÞ over all possible states except a few in order
to obtain PtþDtðxÞ or PtþDtðxAxBÞ (Eqs. (7) and (10)),

* an ansatz corresponding to the approximation
(Eqs. (8) and (13)),

* and the continuous-time limit.

However, the last step is not really imperative. Our
methodology works equally well in discrete time. If Dt

is set to 1, lDt ¼ l then corresponds to a probability
rather than to a rate and higher-order terms in l appear
in the equations. As an example, the discrete-time
evolution at the mean-field level is governed by Eq. (9).
Obviously, the results quantitatively differ from the
continuous-time limit. The full advantage of this
formalization will become clear in the next section.

It is also important to note that topological properties
beyond the degree distribution do not enter at the level
of the standard pair approximation. In the case of the
square lattice, the nodes 1 and 4 as well as 3 and 6
(Fig. 2) are also connected whereas these links are
missing in its random counterpart. Various improve-
ments upon the ordinary pair approximation have been
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proposed. Instead of deriving the higher-order correla-
tions from the dynamics of the system, these pair models
consist in making a number of biologically motivated
assumptions involving parameters that characterize the
topology of the underlying network. We shall compare
our approach with these improved pair models in the
next section.
43

44

34

42

 12 4

Fig. 4. An arbitrary node (denoted by 0) with its corresponding star-

like fundamental cluster within a homogeneous random network of

degree K ¼ 4:
4. Further systematic improvement

The difference between the simulation results and the
pair approximation in Fig. 3 is rooted in the neglection
of correlations of range greater than 2: Especially in the
vicinity of the phase transition, where a finite fraction of
the nodes starts being infected, the links should not be
considered independently, and higher-order dynamical
correlations have to be taken into account. In other
words, the state xi of node i at time t þ Dt is determined
by all the states of its nearest neighbours, i.e. it is not the
case that the states of the various nearest neighbours at
time t contribute independently from each other to the
state xi at time t þ Dt:

We therefore want to incorporate the longer cor-
relation range by extending the fundamental cluster
(site, pair) to a star or square, respecting the under-
lying network’s topology. Therefore, different spatial
patterns are embedded very naturally by our
method. The equations, to which the dynamics of
the higher-order correlations are subject to, are
derived in a very straightforward way by our formalism.
The binary nature of these equations allows for a
very efficient solution by the computer. On the
other hand, the equations can be simplified further by
taking into account the underlying symmetries. This
procedure will be illustrated for the triangular and
square lattices. Performing this extension, we find an
improved description of the steady state as well as the
dynamics.

Alternatively, it is possible to derive the dynamics of
triple correlations by using Eq. (1) (Morris, 1997).
Although this approach has the advantage that no
specific cluster must be chosen, it is a rather difficult
undertaking.

4.1. Homogeneous random network

Random networks are characterized by a vanishing
clustering (local interconnectedness), but the average
distance between any pair of nodes only increases
logarithmically with the system size: this is known as
the small world phenomenon (Watts and Strogatz,
1998). It is easy to imagine that the more rapidly the
epidemic spreads the smaller the underlying ‘‘world’’ is.

As the local topology is fully tree-like, we shall use a
star as our fundamental element. In contrast to regular
lattices, this extension is a unique choice. Fig. 4 shows
an arbitrarily chosen node in a homogeneous
random network and two hierarchies of its nearest
neighbours, also introducing the notation which is
adopted below.

The probability that, at time t; node 0 is in state x0

and its nearest neighbours 1; 2; 3; 4 are in the states
fx1;x2;x3;x4g is denoted by

Pt

x2

x1 x0 x3

x4

0
B@

1
CA

and obtained by summing PtðxÞ over all possible
configurations fx0;x1;x2;x3;x4g held fixed.

The probability that the nearest and second-nearest
neighbours of node 0 are in given states is given by the
ansatz (the sum over the remaining y-states is again
performed trivially)

PtðfyjgjANÞ ¼ Pt

y2

y1 y0 y3

y4

0
B@

1
CAY4

l¼1

Ptðyl2yl3yl4 j yly0Þ;

ð15Þ

where N represents the set of nodes depicted in Fig. 4
and the conditional probabilities are

Ptðyl2yl3yl4 j yly0Þ ¼

Pt

yl4

yl3 yl y0

yl2

0
B@

1
CA

Ptðyly0Þ
:

The pair probability appearing in the above expression
is extracted from the corresponding star probabilities by

Ptðyly0Þ ¼
X1

yl2¼0

X1

yl3¼0

X1

yl4¼0

Pt

yl4

yl3 yl y0

yl2

0
B@

1
CA:
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Fig. 6. An arbitrarily chosen square within a two-dimensional lattice

and the denotation of the nearest neighbours of its corners. The former

serves as the fundamental element within the square approximation.
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With these ingredients, the continuous-time limit of
Eq. (6) reads

’P

x2

x1 x0 x3

x4

0
B@

1
CA

¼
X

fyjgjAN

PðfyjgjANÞ
�

�
Y4

i¼0

ð1 � 2xiÞ yi � lð1 � yiÞ
X
jnni

yj

" #Y
kai

tk

( )#
ð16Þ

with PðfyjgjANÞ given by Eq. (15). The binary character
of this system of 25 ¼ 32 equations permits a very
efficient numerical implementation. On the other hand,
if one takes into account the symmetries of the problem,
the degrees of freedom can be reduced to 10; this
procedure will be shown for the regular lattices. The left
panel of Fig. 5 shows the striking agreement of the star
approximation with the simulation result, all along from
a high effective spreading rate to its threshold value, for
the equilibrium situation. Its right part opposes the
various approximations to the stochastic simulation for
the case of the invasion of an infective agent, the initial
prevalence being set to 0.01. Whereas the steady state
is reached rather quickly in the mean-field description,
the slope of the star approximation is in remarkable
agreement with the simulation. As correlations of a
greater range are taken into account, it can also be
observed that the system equilibrates more smoothly,
that is .rðtC30Þ for the star approximation is consider-
ably smaller than the rate of change of ’r at time tC10 at
the mean-field level.
0 1 2 3 4
1/λ

0

0.2

0.4

0.6

0.8

1

ρ

Fig. 5. Spreading behaviour for a population arranged on a random network

and different levels of approximations for the equilibrium dynamics. The form

of networks of size N ¼ 105; the transition probabilities being determined by

with the simulation result, yielding also an accurate description of the critica

line) have been plotted again for comparison. The right part shows the inv

topology. At the mean-field level (dotted line), the initial prevalence of 0.01

approximation (dashed line) provides a further improvement, and the star ap

simulation whose parameters N and Dt correspond to those already mentio
4.2. Square lattice

In contrast to random graphs, the epidemic dynamics
on top of this regular network is essentially dominated
by the presence of loops. In order to arrive at a level of
description beyond the pair approximation, we shall use
the square as our fundamental cluster. This seems to be
a natural choice, although it is not unique as discussed
below. In analogy to the previous subsection, the
probability that the corners of the square ABCD are in
the states fxA; xB;xC ;xDg at time t is deduced from the
system probability by

Pt

xA xB

xD xC

 !
¼

X
fxigiefA;B;C;Dg

PtðxÞ:

If the nearest neighbours of the vertices A;B;C and D

are enumerated according to Fig. 6, we write for the
0 50 100 150
t

0

0.2

0.4

ρ

obeying PðkÞ ¼ dk4: The left panel shows the simulation result (circles)

er was obtained by performing 10 iterations on 10 different realizations

Dt ¼ 0:01: The star approximation (solid line) is in excellent agreement

l region. The mean-field (dotted line) and pair approximation (dashed

asion of an infective agent (infection rate l ¼ 3
7
) on the same type of

increases to its equilibrium value during 10 time units only. The pair

proximation (solid line) is in remarkable agreement with the stochastic

ned above.
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probability that the nodes comprised within these 5
squares (i.e. the nearest neighbours of the central
plaquette) are in given states

PtðfyigiAfA;B;C;D;1;2;y;8gÞ

¼ Pt

yA yB

yD yC

 !
Ptðy1y2 j yAyBÞPtðy3y4 j yByDÞ

� Ptðy5y6 j yCyDÞPtðy7y8 j yAyCÞ ð17Þ

with

Ptðy1y2 j yAyBÞ ¼

Pt

y1 y2

yA yB

 !
PtðyAyBÞ

involving the pair probability

PtðyAyBÞ ¼
X1

x1¼0

X1

x2¼0

Pt

x1 x2

yA yB

 !

and analogously for the other factors appearing in
Eq. (17). At this point, we could again write down an
equation of type (16), but we shall explicitly make use of
the symmetries of the problem in order to reduce the
computational load. The 24 ¼ 16 plaquette probabilities
are subject to

Pt

00

00

 !
 q0;t;

Pt

10

00

 !
¼ Pt

01

00

 !
¼ Pt

00

10

 !
¼ Pt

00

01

 !
 q1;t;

Pt

11

00

 !
¼ Pt

01

01

 !
¼ Pt

00

11

 !
¼ Pt

10

10

 !
 qA

2;t;

Pt

10

01

 !
¼ Pt

01

10

 !
 qC

2;t;

Pt

11

10

 !
¼ Pt

11

01

 !
¼ Pt

10

11

 !
¼ Pt

01

11

 !
 q3;t;

Pt

11

11

 !
 q4;t:

The exact description (6) leads to the following
continuous-time dynamics for these quantities:

’q0 ¼ 4q1 � 8lT1q0;

’q1 ¼ �q1 þ 2qA
2 þ qC

2 þ l½�2q1ð1 þ 2T1 þ T2Þ þ 2T1q0�;

’qA
2 ¼ �2qA

2 þ 2q3 þ l½�4qA
2 þ 2T1ðq0 þ 3q1Þ þ 2T2ðq1 � qA

2 Þ�;

’qC
2 ¼ �2qC

2 þ 2q3 þ lð�4qC
2 þ 4T1q1 � 4T2qC

2 Þ;

’q3 ¼ � 3q3 þ q4 þ l½2q1 þ 4qA
2 � 4q3 � 2T1ðq0 þ 2q1Þ

þ 2T2ðq1 þ 2qA
2 þ 2qC

2 Þ�;

’q4 ¼ �4q4 þ l½8qC
2 þ 16q3 � 8T2ðq1 þ qA

2 þ qC
2 Þ�; ð18Þ
where

T1 ¼
tA
1

pA
0

and T2 ¼
tC
2

pA
1

involving the following triplet- and pair probabilities
given by the square probabilities through

tA
1 ¼ P

0 0

1

 !
¼ q1 þ qA

2 ;

tC
2 ¼ P

0 1

1

 !
¼ qC

2 þ q3;

pA
0 ¼ Pð00Þ ¼ q0 þ 2q1 þ qA

2 and

pA
1 ¼ Pð10Þ ¼ q1 þ qA

2 þ qC
2 þ q3:

Since

q0 þ 4q1 þ 4qA
2 þ 2qC

2 þ 4q3 þ q4 ¼ 1;

the square approximation in form (18) represents a
dynamical system of 5 degrees of freedom, in contrast to
16 if the symmetries were not exploited.

The left part of Fig. 7 shows the systematic improve-
ment brought about by the square and bisquare
approximations in dynamic equilibrium. The latter is a
description whose fundamental cluster is composed of
two squares. Its prediction of the epidemic threshold
(lcC0:38) is still lower than the simulation result
(lcC0:41): this highlights the crucial role of the high-
er-order spatial correlations in lattice structured popula-
tions. The right panel of Fig. 7 represents the
improvements upon the dynamics. Note that from
a certain characteristic time the simulation lags behind
all the approximations as a direct consequence of the
stochasticity that is particularly important at low
prevalences. However, this characteristic time is shifted
to the right as higher-order correlations of a greater
range are taken into account.

An improvement upon the standard pair approxima-
tion can also be obtained as follows (Van Baalen, 2000).
Instead of deriving the square probabilities from the
dynamics of the system, one can write it as

P
xi xa

xj xb

 !

¼ PðxiÞPðxaÞPðxbÞPðxjÞCiaCabCbjCjiT&iabj

involving the relative pair and square correlation factors
Cxy and T&iabj : For a straight triple, it is supposed

PðxixaxbÞ ¼ PðxiÞPðxaÞPðxbÞCiaCabT+iab:

By setting the relative correlation factors T&iabj and
T+iab to 1 and using the fact that on the square lattice 1

3

of the triples are straight and 2
3

form part of a square,
one obtains an improvement for Pðxi jxaxbÞ: In other
words, the conditional probability Pðxi jxaxbÞ is not
simply set to PðxijxaÞ as it is done in the ordinary pair
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Fig. 7. Prevalences for the epidemic process on a square-lattice structured population. The left side illustrates the result for the equilibrium state. The

mean-field (dotted line) and pair approximations (dashed line) are levels of description at which topological properties beyond the degree distribution

do not enter. The approximations involving the square (solid line) and a rectangle composed of two squares (dashed–dotted line) as fundamental

units systematically approach the steady-state behaviour, as predicted by the simulations (squares, for its details see Fig. 3). The right panel reports

on the dynamics for l ¼ 0:5: By taking into account correlations of a greater range, the slope during the transient time decreases as a comparison of

the mean-field (dotted line), pair (dashed line), square (solid line) and bisquare approximations (dashed–dotted line) shows. The difference between

the simulation result (for N ¼ 104; Dt ¼ 0:01) and the bisquare approximation remains significant during the invasion period due to the considerable

effect of random events at overall low prevalence.
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C

Fig. 8. An arbitrarily chosen triangle and its nearest neighbourhood.

The dashed lines indicate that the corresponding links are ignored.
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approximation, but rather the loop structure is incor-
porated while still using pairs as building blocks.

4.3. Triangular lattice

In its ordinary formulation, the fact that two sites can
have neighbours in common is simply ignored by the
pair approximation. By means of the triangular lattice,
we show how the method introduced in this paper has to
be applied, i.e. what the next level of description beyond
the pair approximation is.

The clue is to use the triangle as the basic element. In
analogy to the previous cases, the probability that the
vertices of a triangle ABC are in the states fxA; xB;xCg
at time t is obtained through

Pt

xAxB

xC

 !
¼

X
fxigiefA;B;Cg

PtðxÞ:

Fig. 8 shows the neighbourhood of an arbitrarily chosen
triangle within this lattice. For the probability that the
vertices depicted in Fig. 8 are in given states, we suppose

PtðfyigiAfA;B;C;1;2;y;9gÞ

¼ Pt

yAyB

yC

 !
Ptðy1 j yAyBÞPtðy4 j yByCÞ

� Ptðy7 j yCyAÞPtðy8y9 j yAÞPtðy2y3 j yBÞPtðy5y6 j yCÞ:

The conditional probabilities appearing in the above
expression can be written as fractions involving site and
pair probabilities. The latter are deduced from the
triangle probabilities in analogy to previous explana-
tions. As the triangle correlations are subject to
the symmetries

Pt

00

0

 !
 t0;t;

Pt

10

0

 !
¼ Pt

01

0

 !
¼ Pt

00

1

 !
 t1;t;

Pt

11

0

 !
¼ Pt

10

1

 !
¼ Pt

01

1

 !
 t2;t;

Pt

11

1

 !
 t3;t

a further simplification can be performed, and finally the
continuous-time triangle dynamics is governed by the
equations:

’t0 ¼ 3½t1 � 2lðA1 þ A2Þ�;

’t1 ¼ �t1 þ 2t2 þ 2lð�2t1 þ 3A1 þ 2A2 � 2A3 � A4Þ;

’t2 ¼ �2t2 þ t3 þ 2lðt1 � 3t2 � 3A1 � A2 þ 4A3 þ 2A4Þ;

’t3 ¼ 3½�t3 þ 2lðt1 þ 3t2 þ A1 � 2A3 � A4Þ�; ð19Þ



ARTICLE IN PRESS
T. Petermann, P. De Los Rios / Journal of Theoretical Biology 229 (2004) 1–1110
where

A1 ¼
p1t0

s0
; A2 ¼

t0t1

p0
;

A3 ¼
p0p1

s0
and A4 ¼

t1t2

p1

depending on the pair probabilities p1 ¼ Pð10Þ ¼ t1 þ t2;
p0 ¼ Pð00Þ ¼ t0 þ t1 and the site probability s0 ¼ Pð0Þ ¼
t0 þ 2t1 þ t2: Because of the constraint

t0 þ 3t1 þ 3t2 þ t3 ¼ 1;

we have three degrees of freedom in the triangle
approximation (19).

As far as the equilibrium prediction is concerned, the
triangle approximation provides a very good description
for 1=lo3 (Fig. 9, left panel). The difference between its
threshold prediction (1=lcC4:5) and the simulation
result (1=lcC3:9) is of the same order of magnitude as
the plaquette approximation in the case of the square
lattice. Concerning the dynamics (Fig. 9, right panel), we
also observe a lag between the simulation and the
approximations, and the slope during the transient time
is slightly improved as one goes from the pair to the
triangle approximation.

The strategy outlined at the end of the last subsection
can also be applied to the triangular lattice (Van Baalen,
2000). In addition to the open triplet probability, the
triangle probability is written as

P
xi

xaxb

 !
¼ PðxiÞPðxaÞPðxbÞCiaCabTWiab:

One then obtains an analogous correction for
Pðxi j xaxbÞ involving a parameter y denoting the
fraction of triplets in closed form that is 2

5
in the

triangular lattice. Interestingly, the simplest elaboration
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Fig. 9. Results for the SIS model on a triangular lattice. Left: steady-state pre

simulations (triangles) whose parameters are N ¼ 104; Dt ¼ 0:01 and 10 it

threshold lc ¼ 1
6
: With respect to the pair approximation (dashed line),

approximation of the simulation result. Right: invasion dynamics for an eff

(dotted line) and pair dynamics (dashed line). The improvement brought

simulation result due to the same reason as in the case of the square lattice.
of this approach (tWiab ¼ t+iab  tiab) reproduces the
invasive period reasonably accurate if y is chosen larger
than its correct value (yC0:6). Keeling et al. (1997) and
Rand (1999) also developed improved pair models based
on this approach.
5. Conclusion

We have studied a dynamic model of epidemic
spreading where every individual is in contact with an
equal number K of nearest neighbours. Infected nodes
recover spontaneously at a rate 1, on the other hand,
they infect neighbouring susceptible sites at a rate l: We
have chosen this simple SIS-type model since the focus
of this article is the introduction of a novel methodology
that allows a rather straightforward derivation of the
dynamics of higher-order correlations.

The method we propose here consists in choosing a
fundamental cluster composed of a certain number of
nodes n as well as links connecting them. A definite
probability is assigned to each possible configuration of
the basic element. The size of the fundamental cluster
represents the range up to which spatial correlations are
exactly taken into account. At a level beyond the pair
approximation, the choice of the basic element is guided
by the underlying network’s topology. In the case of the
square lattice, clusters composed of at least one
plaquette serve as the fundamental element; for random
networks the local tree-like structure is incorporated by
using the star as the basic unit. Spatial patterns beyond
the degree distribution are therefore embedded in a very
natural way by our method. Describing the epidemic
dynamics of the entire population as a discrete
time Markovian process, the appearing probabilities
0 50 100 150
t
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0.2

0.4

ρ

valence as predicted by various approximations and through computer

erations. The mean-field description (dotted line) yields an epidemic

the description based on the triangle (solid line) provides a better

ective spreading rate l ¼ 1
3
: The upper two curves show the mean-field

about by the triangle approximation (solid line) still lags behind the

The latter was obtained for N ¼ 104 and Dt ¼ 0:01 as well.
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(probability that a cluster and its nearest neighbourhood
is in a given configuration) are expressed in terms of the
fundamental cluster probabilities. The continuous-time
dynamics emerges as a limiting case (Dt-0).

With respect to the ordinary (rather heuristic)
derivation of the mean-field and pair approximation,
these descriptions are derived with the help of our
formalism by using the site or the pair, respectively, as
fundamental clusters in a very automatic way. Indepen-
dently of the specific choice of the cluster, the binary
character of the resulting equations allows for a very
efficient solution by the computer. Likewise, a further
simplification can be reached if the symmetries, which
the fundamental cluster probabilities are subject to, are
taken into account. As soon as correlations of range
greater than 2 are not ignored, our method yields
improved estimates for the location of the phase
transition. In the case of the random network, the star
approximation already leads to an excellent description
of the steady state and the transient dynamics. In the
regular counterpart, many squares have to be included
within the corresponding fundamental unit in order to
attain the same level of accuracy. This is due to the
presence of stronger correlations caused by the high
local ordering. The method was also illustrated for a
triangular lattice and contrasted to approaches that
make a certain number of assumptions about the higher-
order correlations which lead to improved pair models.

We have focused on homogeneous networks, since in
this case a fundamental cluster is identified most easily.
The homogeneity lies indeed at the basis of our cluster
approximations since it must be possible to express
the probability appearing on the right of our master
equations (see e.g. Eq. (16)) entirely in terms of the
fundamental cluster probabilities, such as in Eqs. (15)
and (17). In principle, our method can be extended to
slightly heterogeneous systems, e.g. a random network
where two different degrees are present. The dynamics is
then described in terms of two different star-like clusters
(according to the occuring degrees), this hybridization
involving the constraint that the pair probabilities
derived from the two clusters must coincide.

However, the novelty of the present work lies in the
formalism which essentially consists in a more general
starting point and its associated systematic improva-
bility rather than the specific results for the selected
epidemiological model and geometrical examples.
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