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The spreading of an epidemic is determined by the connectivity patterns which underlie the population.
While it has been noted that a virus spreads more easily on a network in which global distances are small, it
remains a great challenge to find approaches that unravel the precise role of local interconnectedness. Such
topological properties enter very naturally in the framework of our two-time-step description, also providing an
approach to track a probabilistic system. The method is elaborated for SIS-type epidemic processes, leading to
a quantitative interpretation of the role of loops up to length 4 in the onset of an epidemic.
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I. INTRODUCTION

Almost all of us have already met someone far from
home, who turns out to share a friend with us. Milgram first
put this social phenomenon on a firm basis, finding that any
two individuals are separated, on average, by six acquaintan-
ces [1]. Furthermore, our society is composed of groups
within which, if individual A is acquainted with persons B
and C, then B is likely to know C. In the language of social
networks, this means that the individuals A, B, and C are
arranged on a triangle. These two facts tell us that in the
social universe, global distances are small, and local inter-
connectedness, i.e.,clustering, is high. A network that pos-
sesses both of these topological properties is called asmall
world. In order to find a model that accounts for both of
these properties, one could choose a regular lattice whose
nodes are indeed locally highly interconnected. But since
global distances are large in this type of network, it is an
ineligible candidate for a small world model. In a random
graph[2], which is a set of nodes(e.g., laid out on a virtual
circle) with connections between them established at ran-
dom, a link is more likely to point to a far away node than to
one close by.(Here we refer to the distance on the virtual
circle’s circumference.) As a consequence, the presence of
the very many long-range links accounts for the desired glo-
bal property, but the degree of clustering is low. Watts and
Strogatz combined these two insights and proposed a model
that interpolates between a regular lattice and a random
graph, thus capturing both the global and local topological
properties mentioned above[3]. But the small world property
is not merely exhibited by social networks. Yet, through the
increased availability of data, it was found that the simulta-
neous occurrence of high localand global interconnected-
ness is prominent to a much wider class of systems, notably
the Internet[4,5], the World Wide Web[6], metabolic net-
works [7], and food webs[8].

In addition to the small world property, there is another
important fact when it comes to characterizing the topology
of a complex network: not all the nodes have the same num-
ber of edges. The corresponding measure is thedegree dis-

tribution Pskd which gives the probability that a randomly
chosen node has degreek, that is,k edges. For most of the
just mentioned examples, this distribution was found to be
Pskd,k−g, 2,gø3, implying the absence of a characteris-
tic (degree) scale, hence the namescale-freenetwork. This
emergence of scaling can be understood, for example, in
terms ofgrowingnetworks. Starting from a small core graph,
at each time step a node is added together with a certain
number of edges that are connected to existing nodes, the
latter being chosenpreferentially, that is, a link is more likely
established to a high-degree node[9]. This fat-tailed degree
distribution implies the presence ofhubs(high-degree nodes)
which hold together the network and play a crucial role in
issues such as robustness or fragility[10].

This explosion of research activity in the field of complex
networks has also shed light on epidemic spreading since the
latter can be regarded as a dynamical process occurring on a
complex network: a computer virus spreads on the Internet,
and HIV (as a biological example) propagates on top of the
web of human sexual contacts. Also these two examples fall
into the category of scale-free networks[11,12], and it is this
topological property that accounts for the absence of a finite
epidemic threshold in the corresponding spreading phenom-
enon[13].

The degree distribution is only a first way to characterize
the degree related topology of a complex network. Indeed,
by analyzing scientific collaboration networks, researchers
working with many others(high-degree nodes) tend to col-
laborate with other “hubs.” This means that there existde-
gree correlations, and the just mentioned property has been
called assortative mixing, holding generally for social net-
works [14]. On the other hand, in the Internet(at the autono-
mous system level), high-degree nodes are more likely con-
nected to low-degree ones, thus exhibitingdisassortative
mixing. The influence of such degree correlations on the
spreading of an epidemic was investigated in detail[15],
finding that neither assortative nor disassortative scale-free
networks exhibit a finite epidemic threshold[16]. The in-
sights about the role of these degree related topological prop-
erties in epidemic spreading have been gained at the mean-
field level.

Besides degree correlations, triangles are ubiquitous in
complex networks as outlined in the first paragraph, and*Electronic address: Thomas.Petermann@alumni.ethz.ch
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more generally, many loops of short length were found in
these systems[17]. Motivated by Watts and Strogatz’ model
[3] which uses a regular lattice, i.e., an ordered network pos-
sessing many loops, as starting point, we shall also use the
concept oflocal orderingwhen referring to the loop structure
of a complex network. More information can be extracted if
the triangles are sorted according to the degrees of their cor-
ners, finding that mainly the low-degree nodes account for
the high level of clustering[18,19]. This suggests the pres-
ence of interesting modular organizations, and similar results
were obtained from an analysis of loops of length 4[17].
Local ordering plays a crucial role in the function of a meta-
bolic network (with scale-free topology). Indeed, the loop
structure is much richer than in the scale-free model based on
growth and preferential attachment[20]. This work also in-
vestigates the number of triangles as a function of the system
size for this model, a result which was generalized to loops
up to length 5, yielding robust scaling relations[21].

Obviously the presence of loops has an effect on the
spreading behavior since, with respect to a treelike topology,
there exist many more paths along which the virus can
propagate. Different strategies in order to gain insights about
the role of local ordering properties have been proposed. An
interpretation of how clustering influences the stationary
spreading behavior was obtained by mapping the epidemic
process onto bond percolation[22]. Another approach is to
abandon the mean-field level and take into account spatial
correlations which govern the epidemic dynamics. Matsuda
et al. first used the ordinary pair approximation in order to
study a population dynamical problem[23]. This approxima-
tion, as its name anticipates, accounts for pair correlations
and lies at the basis of improved pair models[24,25] which
uncover the role of local ordering in a rather indirect way:
clustering enters by making a number of assumptions about
the opens/d and closedsnd triple correlations. In cluster
approximations, a time-dependent probability is assigned to
each configuration of the fundamental cluster whose choice
is guided by the network topology[26]: for investigating the
spreading dynamics on a triangular lattice one uses a triangle
as fundamental cluster whereas the star is the appropriate
choice for a random network. Higher-order correlations are
therefore embedded very explicitly. Moreover the systematic
improvability of this method makes it a powerful tool to
study probabilistic systems.

In order to understand the role of local ordering proper-
ties, the exploration of temporal correlations seems to be an
even more natural approach: for example, within a two-step
description, it matters whether the local topology is treelike
or if loops of short length are present. The method is illus-
trated for the susceptible-infected-susceptible model(see, for
example, Ref.[27]), homogeneous networks are used as
starting point, and analytical estimates are obtained also for
disordered graphs obeyingPskd=dk,K, K being arbitrary.

The paper is organized as follows. Section II describes the
adopted model consisting of the contact network as well as
the local dynamics. In Sec. III, we introduce the formalism,
from which the two-step description is derived. For com-
pleteness, the necessary ingredients in order to arrive at the
one-step site approximation, i.e., the common mean-field
level, are also shown. Section IV explores the implications of

the double-step approach for networks of degree 4, the gen-
eralization to arbitrary degree is done in the following sec-
tion. The major conclusions are drawn in Sec. VI.

II. THE MODEL INGREDIENTS

The dynamical laws that describe the spreading of an in-
fectious disease are determined by the contact structure
which underlies the population. We therefore model the epi-
demic as a dynamical process on top of a given network that
does not change in time. The nodes of the network represent
individuals, and the links correspond to relationships be-
tween individuals along which an infective agent can propa-
gate.

Since the aim of this paper is the investigation of the role
of loops of short length, we adopt a rather simple epidemio-
logical model where the individuals can be only in two pos-
sible states, namely, infected(I) or susceptible(S). Because
the nodes repeatedly run through the cycle susceptible→
infected→ susceptible, it is called SIS model. In the physics
community, it has recently been formulated as follows[13]:
A node susceptible to the disease gets infected with probabil-
ity nDt if it is connected to at least one infected nearest
neighbor. On the other hand, infected nodes recover sponta-
neously with probabilitydDt. This version of the SIS model
is formally advantageous with respect to its conventional for-
mulation, where infected nodes can infect neighboring sus-
ceptible vertices with probabilitynDt [27]. In the latter case,
susceptible nodes become infected with probability 1−s1
−nDtdkinf, kinf being the number of infected nearest neighbors.
In this paper, we will use the former version. By rescaling
the time unit, we can reduce the number of parameters to
one: the time evolution is determined by the effective spread-
ing ratel;n /d, and the recovery rate is set to 1. The quan-
titative details of the behavior of the system still depend on
the choice ofDt. In particular, the effect of the loops is of
higher order inDt, such that their influence is not seen in the
continuous-time limitsDt→0d. As long asDt.0, we set this
quantity to 1 without lack of generality.

The other model constituent concerns the underlying net-
work. We shall not attempt to examine the combined effect
of the degree distribution, degree correlations, and the loop
structure. While the role of these degree related connectivity
patterns in epidemic spreading is rather well understood,
little attention has been given to the effect of local ordering.
That is why we focus on this topological property. We there-
fore use networks in which every node has the same number
of nearest neighbors(fixed degree). The adopted strategy is
to start with strictly homogeneous graphs(networks in which
identical connectivity patterns are “seen” from every node)
differing in the detailed loop structure(Fig. 1). This leads us
to an understanding of the role of these distinct local order-
ing properties, even for networks that are no longer strictly
homogeneous but which still obeyPskd=dk,K, K being the
constant degree.

In the caseK=4, examples of purely homogeneous net-
works are the random homogeneous network[Fig. 1(a)] con-
structed according to the Molloy-Reed algorithm[28,29], the
square lattice[Fig. 1(b)], the Kagomé lattice[usually used in
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condensed matter physics as this geometry represents one of
the most frustrated antiferromagnetic systems, Fig. 1(c)] and
a ring where nodes two units apart from each other are also
directly connected[Fig. 1(d)]. For the random network, the
homogeneity definition given above only holds approxi-
mately. While loops of short length do not occur in the limit
of large network size, long ones of various lengths may exist.
Therefore different nodes may not “see” identical connectiv-
ity patterns. Also the Cayley tree lacks completely in loops.
But as the last generation of nodes has degree 1, it does not
fall into the class of homogeneous networks. Indeed, since
the number of nodes belonging to generationN is KsK
−1dN−1, most of the nodes are even comprised within the last
generation. Clearly, all the networks depicted in Fig. 1 are
characterized by the degree distributionPskd=dk4, but they
differ in the way the second neighbors are arranged, that is,
the loop structure becomes richer going from(a) to (d).
While the random network has no short loops at all, the ones
of length 4 are a fingerprint of the square lattice. In the
Kagomé lattice, every node is a corner of two distinct tri-
angles. Finally, in the ring of degree 4, triangles and two
different kinds of loops of length 4 are found, namely,
plaquettes(as in the square lattice) and the so-called primary
quadrilaterals(two adjacent triangles), see Sec. IV B.

In order to study the epidemic process on disordered “ho-
mogeneous” topologies, we subject the networks in Figs.
1(b)–1(d) to the following rearrangement algorithm(Fig. 2)
[30].

(1) Choose randomly two links(link 1 connecting node
A1 with B1 and connection 2 linking vertexA2 with B2) that
do not share a common node.

(2) Remove these two links and establish two new con-
nections betweenA1 andB2 as well asA2 andB1.

Repeating this rewiring procedure a certain number of
times leads to locally varying numbers of loops while the
degree distribution remains unaltered.

III. THE FORMALISM

In this section, we shall introduce the formalism that is
used in order to describe the dynamics on top of the net-
works specified in the preceding section. For completeness,
we then derive the(single step) mean-field approximation
which could also be obtained heuristically. In the last para-
graph, we derive a two-step description that allows us to gain
insight about the loop structure in epidemic spreading.

On an exact level, we shall describe the epidemic dynam-
ics by assigning a probabilityPtsxd to each configurationx at
every instant of timet. The vectorx contains the statesxi of
all the nodesi of the network,xi being either 0(susceptible)
or 1 (infected). The system probabilities satisfy at any timet,

o
x

Ptsxd = 1,

and evolve in time according to

Pt+1sxd = o
y

Wy→xPtsyd. s1d

The transition matrix of the systemWy→x is obtained from
the matrixWyl→xl

l which shall denote the probability that the
state of the arbitrary sitel changes fromyl to xl, through

Wy→x = p
l=1

N

Wyl→xl

l ,

N being the total number of nodes in the network. The matrix
elements representing the probabilities for the possible
events at the sitel are given by our version of the SIS model,
namely,

W1→0
l = 1, W0→1

l = lF1 − p
jnnl

s1 − yjdG ,

W1→1
l = 0, W0→0

l = 1 −lF1 − p
jnnl

s1 − yjdG ,

or in a more compact form

FIG. 1. Homogeneous networks of degree 4. In(a) the nodes are connected at random under the restriction thatK=4 links emanate from
every vertex, leading to a treelike topology. The role of triangles and loops of length 4 is studied by means of the square lattice(b) and the
Kagomé lattice(c) where they appear separately, as well as the ring-type network(d).

FIG. 2. Rewiring procedure not affecting the degree distribu-
tion: the end vertices of two arbitrarily chosen links are exchanged.
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Wyl→xl

l = 1 −xl + ls2xl − 1ds1 − yldF1 − p
jnnl

s1 − yjdG .

The products in the above expressions have to be taken over
all the nearest neighborsj of node l. The factor 1−p jnnls1
−yjd is 1 if at least oneyj =1 and 0 otherwise.

Before deriving our two-time-step description, we show
how the conventional mean-field approximation is retrieved
through this formalism. At that level, the sites are considered
independently from each other, and we write for the system
probability

Ptsxd = p
l=1

N

Ptsxld, s2d

i.e., the system is described by the single variablePts1d [the
probability of being susceptible isPts0d=1−Pts1d]. Its dy-
namics is obtained from Eq.(1) by summing it over all pos-
sible configurationsx, x0 held fixed

where the node 0 can be chosen in an arbitrary way. The
left-hand side of the above equation corresponds to the prob-
ability that node 0 is in statex0 at timet+1. With the ansatz
(2), the time evolution is

Pt+1s1d = lPts0df1 − Pts0dKg.

With Pts1d; Pt andPts0d=1−Pt, by consequence, we obtain
for small values ofPt,

Pt+1 = lKs1 − PtdPt. s3d

The stationary-state conditionsPt+1=Ptd leads to a value for
the epidemic threshold

lc =
1

K
. s4d

Therefore all the networks depicted in Fig. 1 are treated iden-
tically at this level of description. The only topological prop-
erty that determines the critical value of the effective spread-

ing ratel is the number of nearest neighborsK.
Improvements upon the mean-field description can be ob-

tained by taking into account spatial correlations. Based on
the ordinary pair approximation[23], the presence of tri-
angles enters by establishing a number of hypotheses about
the open and closed triple correlations[24,25]. This approach
therefore embeds this topological property in a rather im-
plicit way. In cluster approximations[26], the local topology
and its associated spatial correlations translate directly into
the choice of the cluster and a set of probabilities for its
possible configurations.

Another strategy that serves to incorporate local ordering
properties is to take into account temporal correlations. Thus
by performing two time steps exactly, we expect that the way
the second neighbors are arranged, enters very naturally into
the description. For example, the cases where two nearest
neighbors of an arbitrary node are also directly connected
(presence of a triangle), where they are linked via a second
neighbor(giving rise to a loop of length 4) or where the only
path goes through the original node(treelike structure), lead
to different results. In the remaining part of this section, we
derive the general equation, special cases are then looked at
within the following section.

As outlined above, we iterate Eq.(1) once

Pt+1sxd = o
y
FWy→xo

z
Wz→yPt−1szdG .

We now again pass to a site approximation. By summing the
above equation over all possible configurationsx, x0 held
fixed, we get

Pt+1sx0d = o
z
FPt−1szd o

hyljl=0,1, . . . ,K

SWy0→x0p
j=0

K

Wzj→yjDG ,

s5d

0 again being an arbitrarily chosen node. Furthermore, the
system probabilityPt−1szd is given by Eq.(2), and the nodes
1,2, . . . ,K denote the nearest neighbors of the arbitrarily
chosen node 0. As onlyz states associated with the vertex 0,
its nearest and second neighbors appear in theW factors, the
sum over thez variables associated with nodes more than
two links away from vertex 0, is carried out trivially. A tour
de force calculation leads to

Pt+1s1d = lFl o
a1=1

K

kfa1
lt−1 − l2S o

a1=1

K

o
a2=a1+1

K

kfa1
fa2

lt−1 + o
a1=1

K

kf0fa1
lt−1D

+ l3S o
a1=1

K

o
a2=a1+1

K

o
a3=a2+1

K

kfa1
fa2

fa3
lt−1 + o

a1=1

K

o
a2=a1+1

K

kf0fa1
fa2

lt−1D¯
− s− ldKS o

a1=1

K

o
a2=a1+1

K

¯ o
aK=aK−1+1

K

kfa1
fa2¯

faK
lt−1 + o

a1=1

K

o
a2=a1+1

K

¯ o
aK−1=aK−2+1

K

kf0fa1
fa2

¯ faK−1
lt−1DG . s6d
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Thereby the connectivity embedding factor

fa ; s1 − zadF1 − p
snna

s1 − zsdG
=H1 if za = 0 and at least onezs = 1

0 otherwise

and the expectation value of a function of the states of node
0, its nearest and second neighbors, these vertices collec-
tively being denoted byN 2,

kgshzkjkPN 2dlt ; o
hzkjkPN 2

F p
lPN 2

PtszldgshzmjmPN 2dG s7d

were introduced for notational convenience. In the following,
an expectation value of a product ofn f factors will be re-
ferred to as a term ofnth order although it is proportional to
lln. As is illustrated in detail in the following section, every
term of Eq.(6) corresponds to a subgraph of the graph com-
posed of the nodesN 2 and whose links are according to the
network under investigation. It can already be anticipated
that the first term accounts for the degree distribution only,
whereas the contributions of higher order will give insight
into the role of the loop structure.

IV. NETWORKS OF DEGREE 4

In this section, we elaborate the implications of our two-
step description, the analysis being restricted to the station-
ary state.

In the left part of Fig. 3, we show the simulation results
for the graphs introduced in Sec. II. The ring-type network
exhibits the largest epidemic threshold. For both the square
and Kagomé lattices, the critical value islc.0.34. We there-

fore anticipate that either four plaquettes or two triangles
(per node) lead to the same effect in the regime of low preva-
lences. Finally, the lowest epidemic threshold is found if the
population is arranged on a homogeneous random network
(of degree 4). The last result is very intuitive since in such a
graph, global distances are small, making it more easy for a
virus to spread. Therefore, even if the effective spreading
rate is rather low, a finite fraction of the population will be
infected in the stationary state, hence the small value for the
location of the onset of the epidemic. In summary, these
results indicate that the poorer the loop structure, the lower
the corresponding epidemic threshold.

In the right part of Fig. 3, the one-step and two-step site
approximations are reported. The former corresponds to the
steady-state solution of Eq.(3) for which r=0 at lc=1/4
according to Eq.(4). All the networks in question are there-
fore treated identically, the loop structure being ignored at
this level of description. Yet, the two-step solutions[Eq. (5)]
are diverse for the different graphs. Going from right to left,
the curves correspond to the ring, the square lattice, the
Kagomé lattice, and the Molloy-Reed network, that is, they
appear in the same sequence as at the level of simulation.
Furthermore, the curves corresponding to the Kagomé and
square lattice also meet thex axis at the same value ofl.
These findings confirm our intuitive arguments given in the
preceding section. It has to be noted that the two-step esti-
mates for the threshold values are still considerably inaccu-
rate especially for the ring and lattices, but this just high-
lights the presence of higher-order spatiotemporal
correlations. However, the important point is that the degen-
eracy associated with the one-step description disappears at
the two-step level.

On the basis of Eq.(6), we shall now analytically study
the effect of local ordering properties upon the epidemic

FIG. 3. Equilibrium prevalences for the epidemic process on top of different networks characterized byPskd=dk4. Left: Simulation
results for the homogeneous random graphs* d, the Kagomé latticesnd, the square latticeshd, and the ring-type networkssd. Right: The
one-step site approximation(thin solid) ignores(local) ordering properties and yieldslc=0.25 for any homogeneous network of degree 4.
For the Molloy-Reed network(dotted), the Kagomé lattice(solid), the square lattice(dashed), and the ring(dotted dashed), different
steady-state prevalences are obtained at the two-step level.
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spreading, leading to a quantitative understanding of the
threshold value.

A. Random network

We shall now evaluate all the terms of Eq.(6) for a locally
treelike topology. Figure 4 shows the subgraphs representing
the terms in Eq.(6), in increasing order. Thereby the corre-
spondence is as follows: Given the termkfafbl, the nodesa
andb are represented by filled circles whereas their nearest
neighbors are drawn by empty circles. The links which enter
at the level of the subgraph in question, are represented by
solid lines whereas the ignored ones are dashed. If we denote
the second neighbors of the central vertex 0 byl1,l2,l3 for
l =1,2,3,4 andfollow Eq. (7), the first-order contribution for
a1=1 [subgraph in Fig. 4(a)] is

where the sum over thez variables to which no circles are
associated, has been carried out trivially. Furthermore, we
again have setP; Ps1d in the third line (this is also done
below), and the time index was omitted since we are only
interested in the steady state. This term appears with multi-
plicity 4 (due tooa1=1

K ), giving the contribution 16P to first
order inP.

Figure 4(b) shows the subgraphs representingkf1f2l (up-
per part) and kf0f1l (lower part). Their contributions are

kf1f2l = o
z0

o
z1

o
z2

o
z11. . .z13

o
z21. . .z23

hPsz0dPsz1dPsz2d

3 Psz11dPsz12dPsz13dPsz21dPsz22dPsz23df1f2j

= P + OsP2d,

occurrings 4
2

d=6 times and

kf0f1l = o
z0

o
z1

o
z2. . .z4

o
z11. . .z13

hPsz0dPsz1dPsz2dPsz3dPsz4d

3 Psz11dPsz12dPsz13df0f1j = 9P2 + OsP3d,

thus not giving a contribution to first order inP. As a con-
sequence, the second-order term(that is the one proportional
to ll2) is 6P.

As the procedure should now be clear, we only give the
results for the remaining orders. The upper subgraph of Fig.
4(c) represents the termkf1f2f3l. Its contribution is P
+OsP2d. The lower subgraph corresponds tokf0f1f2l, yield-
ing 18P3+OsP4d. As the former term has multiplicitys 4

3
d

=4, the total third-order contribution is 4P.
As far as the fourth order is concerned[Fig. 4(d)], the

subgraph involving node 0 as filled circle neither gives a

FIG. 4. Pictorial representation of the terms of Eq.(6) for a treelike topology. The order of a specific subgraph is given by the number
of filled circles, (a) corresponding tokf1l, (b) to kf1f2l and kf0f1l, and so forth. In this vein, the indices of thef factors appearing in the
expectation values correspond to filled circles whereas empty circles represent their nearest neighbors. The dashed lines are the links of the
complete graph which are not contained in a specific subgraph.

FIG. 5. Loops of length 4 in a network. Primary quadrilaterals
(left) are two adjacent triangles and therefore involve only nearest
neighbors(solid empty circles) of the central node(filled circle). A
secondary quadrilateral(right) involves a second neighbor(dotted
empty circle) as well.
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contribution whereas the termkf1f2f3f4l having multiplicity
1 also givesP+OsP2d, thus totally yieldingll4P.

Collecting these findings, we obtain the following condi-
tion that determines the epidemic threshold for a treelike
topology

1 = ls16l − 6l2 + 4l3 − l4d, s8d

which is satisfied bylc.0.2609. This is the value that can
be extracted from the right panel of Fig. 3(second curve
from the left).

B. Graphs with loops

It is easy to imagine that the preceding analysis yields
different results when triangles and loops of length 4 are
present. Caldarelliet al. [17] have classified loops of length
4 in a complex network intoprimary andsecondary quadri-
laterals (Fig. 5). In the former case, the external vertices
which the loop is composed of are all nearest neighbors
whereas secondary quadrilaterals are plaquettes, the external
nodes being two nearest and a second neighbor. With these
concepts, the loop structure of a strictly homogeneous graph
can quantitatively be characterized as follows: By choosing
an arbitrary node, the number of edges between its nearest
neighbors is denoted byE. Q1 andQ2 shall refer to the num-
ber of primary and secondary quadrilaterals. For the net-
works depicted in Figs. 1(b)–1(d), we report the correspond-
ing values in Table I.

Let us now look at the subgraph development for the
square lattice whereby we focus on the important changes
with respect to the treelike case. The reader interested in the
full elaborations is referred to the Appendix. We have al-
ready noticed that the first-order term is fully determined by

the degree distribution, therefore thell coefficient is 16, as
in the treelike case. At order 2, the termkf1f2l [upper sub-
graph of Fig. 4(b)] splits into two subgraphs in the presence
of plaquettes(Fig. 6). The right subgraph is the same as in
the treelike case, yet the left yields a contribution 2P
+OsP2d. Their multiplicities are 4(left) and 2 (right) sum-
ming up tos 4

2
d=6. The resultingll2 coefficient is therefore

−10. Although different subgraphs enter into the develop-
ment also at the ordersù3, the coefficients appearing in the
equation determining the epidemic threshold do not change.

The second-order subgraphs for the Kagomé lattice are
depicted in Fig. 7. Both’s contributions areP+OsP2d. The
one involving a triangle appears six times whereas the right
subgraph has multiplicity 4. We therefore obtain the same
second-order coefficient as for the square lattice. An analysis
for the higher-order subgraphs yields no difference with re-
spect to the square lattice. These two cases are therefore
equivalent at the two-step level forP!1.

In Table II, we summarize the coefficients for these two
lattices as well as the ring[Fig. 1(d)]. The full developments
are given in the Appendix.

Of course the idea is now to extend Eq.(8) such that it
holds for all the investigated graphs. Our findings suggest
that the local ordering properties enter in the following way
into the equation determining the epidemic threshold

1 = lf16l − s6 + 2E + Q1 + Q2dl2 + s4 + Q1dl3 − l4g.

s9d

However this is not the full story. What about loops of
length 5? Let us argue why they do not enter in the frame-

TABLE I. Loop properties for the simple non-tree-like networks
described in Sec. II.

Network E Q1 Q2

Square lattice 0 0 4

Kagomé lattice 2 0 0

Ring 3 2 2

TABLE II. Coefficients of the two-step threshold equation for
our networks having in commonPskd=dk4, but differing in the loop
pattern.

lln coeff. n=1 n=2 n=3 n=4

Square lattice 16 −10 4 −1

Kagomé lattice 16 −10 4 −1

Ring 16 −16 6 −1

FIG. 6. Second-order subgraphs not involving the central node
as filled circle for the square lattice. To first order inP, the left
subgraph yields the contribution 2P, the right oneP. For further
explanations, see Fig. 4.

FIG. 7. Subgraphs of second order for the Kagomé lattice, both
contribute withP+OsP2d. See Fig. 4 for details regarding line and
circle styles.
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work of a two-step description. Although there exist such
loops involving only first and second neighbors[Figs. 8(a)
and 8(b)], it may also be closed only between two second
neighbors[Fig. 8(c)]. Obviously such a connection is ig-
nored at the two-step level. In the language of graph theory
[31], the latter case corresponds to afundamental loop
whereas the former examples can be reduced to loops of
length 3 and 4. But whatever the number of hierarchies of
nearest neighbors involved in the formation of the loop is,
the point is the following. If the central node is infected at
time t, it can causally affect only vertices two links away,
corresponding to a chain of four links. Obviously, it matters
whether the first and the last node of this chain are identical.
In this case, we have a loop of length 4. Otherwise it cannot
be distinguished whether the topology is fully treelike or if
loops of length greater than 4 are present. Along these lines,
it has to be expected that loops up to length 2n enter within
an n-time-step description. In contrast, the presence of
higher-order quadrilaterals modifies the coefficients of Eq.
(9). Figure 9(a) shows what we shall call atertiary quadri-
lateral: the three nearest neighbors of the central node are all
connected to another common node. Obviously, the presence
of a tertiary quadrilateral impliesQ2= s 3

2
d=3 secondary quad-

rilaterals. In a fourth-order quadrilateral[Fig. 9(b)], four

nodes share two common vertices as nearest neighbors, im-
plying the presence ofQ3= s 4

3
d=4 tertiary quadrilaterals and

Q2= s 4
2

d=6 secondary quadrilaterals. In a network of degree
K.4, quadrilaterals up to orderK can, in principle, be
found.

A one-dimensional lattice with additional connections be-
tween the nodesi and i +3 for all i [instead ofi +2 as in the
ring investigated up to now, Fig. 1(d)] possesses the neigh-
borhood structure shown in Fig. 10, i.e., it is characterized by
E=Q1=0, Q2=8, Q3=2, andQ4=0. By applying our for-
malism to this case and to a network that has fourth-order
quadrilaterals, Eq.(9) generalizes to

1 = lf16l − s6 + 2E + Q1 + Q2dl2

+ s4 + Q1 + Q3dl3 − s1 + Q4dl4g, s10d

the coefficients of order 3 and 4 being modified only.

C. Introducing disorder

The networks considered up to now lack in the small
world phenomenon, a property characterizing social net-
works on which the epidemic process is occurring. By start-
ing with a ringlike network[Fig. 1(d)] and repeating the
rewiring procedure described in Sec. II a certain number of
times, we obtain graphs of fixed degreeK=4 that are simul-
taneously highly clustered, and in which the average distance
between pairs of nodes is small[3].

The left part of Fig. 11 reports the simulation result for the
equilibrium prevalence of the epidemic process on the disor-
dered ring. Systems of sizeN=104 were used, and the rewir-

FIG. 8. Loops of length 5 involving different hierarchies of
nearest neighbors. Connections emanating from the central node
(filled circle) are drawn as a solid line, links going from nearest
neighbors(empty solid circle) to other nearest neighbors or second
neighbors(empty dotted circle) are dashed, and second neighbors
are connected by a dotted line. The pentalateral(a) involves nearest
neighbors only, in(b) the loop traverses a second neighbor and in
the one in(c) lacking in internal connections, a link between two
second neighbors serves to close it.

FIG. 9. Quadrilaterals of orders 3 and 4. Then (a, n=3; b, n
=4) nearest neighbors(empty solid circles) of the central node
(filled circle) share another vertex(dotted empty circle) as nearest
neighbor.

FIG. 10. This figure visualizes how the nearest(empty solid
circles) and second neighbors(empty dotted circles, verticesh−3,
−1,1,3j) of an arbitrarily chosen node(filled circle, node 0) are
arranged in a one-dimensional lattice with additional connections
between sites 3 units apart. The setsh0,h−1,1,3j ,2j as well as
h0,h−3,−1,1j ,−2j are forming tertiary quadrilaterals.
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ing procedure was repeatedn=100 times. For completeness,
the two limiting cases(fully ordered ring and random net-
work) are also depicted. This panel shows the considerable
effect on the steady state spreading behavior of the rather
small number of rewirings.

The right panel of this figure depicts the one-step site
approximation(predictinglc=0.25 for all cases) and the nu-
merical solutions of the two-step description(5). It has to be
noted that for the partially rewired ring lacking in strict ho-
mogeneity, Eq.(5) was solved at every node, therefore in-
volving the setPisxid, i =1,2, . . . ,N, the resulting prevalence
being given by 1/Noi=1

N Pis1d. Again at the double-step level,
the networks in question are treated differently, as it could
already be observed in Fig. 3. Here the curve corresponding
to the partially randomized ring lies closer to the original
network in proportion to the simulation result. This is due to
the small world property which can have a considerable ef-
fect on the location of the onset of the epidemic. Obviously,
the simulation result uncovers the real effect of this global
topological property whereas at the two-step level, it is the
slightly poorer loop structure that accounts for the corre-
sponding shift in the epidemic threshold.

Of course the quantitiesE, Q1, Q2, Q3, and Q4 are no
longer reasonable for a partially randomized network due to
the lack of strict homogeneity, but rather its local ordering
properties can be quantified by averaging these values over

the entire network. The emerging topological parametersĒ

andQ̄i si =1,2,3,4d are essentially theclustering coefficients
[up to the factorKsK−1d /2=6] andgrid coefficients, i.e., the
densities of triangles and loops of length 4[3,17]. We may
therefore replaceE and the number of quadrilaterals(of the
different orders) in Eq. (10) by its mean values, yielding the
following estimate for the epidemic threshold condition

1 = lf16l − s6 + 2Ē + Q̄1 + Q̄2dl2 + s4 + Q̄1 + Q̄3dl3

− s1 + Q̄4dl4g. s11d

For our partially randomized ring, we haveĒ=2.883, Q̄1

=1.886, Q̄2=1.958, andQ̄3=Q̄4=0, leading tolc.0.2892.
This value corresponds approximately to where the corre-
sponding curve in the right part of Fig. 11 meets thex axis.

V. ARBITRARY DEGREE

The implications of our two-step description have been
illustrated for homogeneous networks of degree 4 in the pre-
ceding section. This was a convenient choice as there exists
a number of familiar simple graphs obeyingPskd=dk4, dif-
ferently ordered. Of course our formalism enables us to gen-
eralize the obtained threshold condition(10) to an arbitrary
degreeK, which is the subject of this section.

Let us again look at a fully treelike network, using Eqs.
(6) and(8) as guidelines. Thel2 coefficient 16 incorporating
the degree distribution is simply 434 since kfal=4P
+OsP2d anda runs from 1 to 4. The remaining coefficients
−6, 4, and −1 correspond to the binomial coefficients
−s 4

2
d , s 4

3
d, and −s 4

4
d. Indeed the threshold equation for a tree-

like network of degreeK derived by Eq.(6) is

1 = lFlK2 − o
k=2

K

lkSK

k
DG . s12d

Repeating the graph developments for homogeneous net-
works characterized by different values ofK and varying
loop structures reveals that the very same correction terms
enter into Eq.(12), yielding

FIG. 11. Steady-state prevalence for the ring-type network having undergone different degrees of randomization. Left: Simulation result
for the original networkssd, its partially rewired versionsnd, and the entirely random networks* d. Right: The single-step site approxima-
tion (thin solid) treats all the networks in question identically whereas at the two-step level, the Molloy-Reed network(dotted), the partially
randomized ring(solid), and the fully ordered ring(dashed) appear in the same sequence as in the left panel.
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TABLE III. Subgraph development for the square lattice. All the terms in Eq.(6) are symbolized by a specific subgraph, its order being
given by the number of filled circles. Thell2 coefficient −10, as an example, is obtained by summing the variousOsPd contributions, that
is, 234+132+034=10, and the negative sign comes from Eq.(6). Thell3 andll4 coefficients are unaltered with respect to the treelike
topology although other subgraphs enter into the development.
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TABLE IV. The subgraphs of all the orders for the Kagomé lattice. See Table III for how the coefficients are obtained and as far as further
details are concerned.
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TABLE V. The full subgraph development for the ring-type network. See Table III for the derivation of thelln coefficients. With respect
to the two lattices treated above, thell2 andll3 coefficients are −16 and 6.
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1 = lHQsK − 1dK2l − QsK − 2dFSK

2
D + 2E + Q1 + Q2Gl2

+ QsK − 3dFSK

3
D + Q1 + Q3Gl3 − o

k=4

K

QsK − kdFSK

k
D

+ QkGs− ldkJ , s13d

where E is again the number of connections between the
nearest neighbors of an arbitrarily chosen node,Qn denotes
the number of quadrilaterals of ordern, andQsxd is the step
function defined by

Qsxd = H1 if x ù 0

0 otherwise.

The equation that describes the role of local ordering in a
disordered network subject toPskd=dk,K is again obtained
simply by replacing the corresponding quantities by its mean

valuessE→ Ē,Qi →Q̄id in Eq. (13), providing an improved
estimate for the epidemic threshold.

VI. CONCLUSION

The spreading of an infectious disease was modeled as a
dynamical process on top of a contact network. We used a
discrete-time version of the simple SIS model, which is in-
fected nodes recover with probabilityDt, and susceptible
nodes become infected with probabilitylDt if they are con-
nected to at least one infected nearest neighbor. As far as the
connectivity patterns underlying the population are con-
cerned, we chose homogeneous networks as starting point
and introduced an arbitrary degree of disorder by an appro-
priate rewiring procedure not affecting the degree distribu-
tion Pskd=dk,K.

Describing the epidemic dynamics of the entire popula-
tion as a Markovian process, we derived a two-step descrip-

tion that takes into account temporal correlations. This ap-
proach revealed to be very prolific if one wants to unravel
the role of loops of short length in the contact network re-
garding epidemic spreading. Indeed it leads to a subgraph
development where the complete graph involves the connec-
tivity patterns of two hierarchies of nearest neighbors(of an
arbitrarily chosen node). Within this approach serving to
track a probabilistic system, the local topology, be it treelike
or be loops of length 3 or 4 present, therefore enters very
naturally. The analytically obtained condition for the location
of the onset of the epidemic then serves as a guiding equa-
tion elucidating the role of clustering and gridlike ordering in
epidemic spreading.

In principle, it is possible to apply our two-step descrip-
tion to more complex networks where different degrees are
present, uncovering the effect of the degree-dependent den-
sities of triangles and loops quadrilaterals on the critical
value. Likewise, loops of length up to 2n are expected to
enter within ann-time-step description, also providing a
natural classification of them. However the major insight
gained by the strategy of exploring temporal correlations is
best illustrated as it was done in this paper.
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APPENDIX: FULL SUBGRAPH DEVELOPMENTS

Here we show the complete subgraph developments for
the square lattice(Table III), the Kagomé lattice(Table IV)
and the ring-type network of Fig. 1(d) (Table V). Every sub-
graph corresponds to a term in Eq.(6), its contribution is
obtained by the procedure illustrated in Sec. IV A. Thelln

coefficient of the threshold equation is obtained by summing
all theOsPd contributions(taking into account the multiplici-
ties) of the nth order subgraphs.
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