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Abstract 
 

 
Finding a model that could reliably describe the Internet’s structure and the principles shaping it 

would be a precious result, since it would open the possibility to play with the Internet, to see the 

effects of different kind of perturbations and, ultimately, to try designing a better network. Yet, 

this task is hindered by our ignorance of the microscopic mechanisms  at work in shaping the 

Internet’s structure. This is a particular application of the most general issue on the analysis of 

collected data (D19).  Here we use the analysis of Internet data as a benchmark against which 

any model that is proposed has to be tested. This has been our approach in this deliverable, and 

we have found that a purely topological description is very likely insufficient to describe the 

Internet, and that some further, finer level of details, capturing the intrinsic qualities of nodes and 

edges, should be included in the models to go beyond simplistic self-referential topological 

mechanisms.  
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Modelling the Internet graph is a challenge that is inextricably intertwined with the statistical 

analysis of Internet data (deliverable D20) so that a certain degree of overlap between these 

deliverables is unavoidable.  

The Internet graph can be analyzed at different levels (IP, routers, Autonomous Systems), each 

with its own peculiarities. As such, the ideal approach would be to have a single model able to 

reproduce all the measured topological network quantities at all levels. This is at present 

unrealistic because the evolution of each level may well be governed by different principles that 

are mostly unknown: as such the modelling of the Internet graph has to rely on simplistic models 

defined by a few, paradigmatic rules. 

Network growth: The Internet (at all levels) changes over time by the continuous 

addition/deletion of nodes. Thus, models for the Internet should either directly describe the 

network dynamics or be compatible with it, meaning that the same outcome should be obtained 

irrespective of considering all nodes as present from the beginning or added/deleted one by one. 

The classical example of an intrinsically dynamical network model is the Barabási-Albert model 

[1], where new nodes enter the network at a constant rate and choose older ones as possible 

connection partners. Clearly older nodes behave differently than newer ones, so that their 

topological properties bear a record of their history. The Erdös-Rényi model [2] is instead an 

example of a model where the final result does not change whether its nodes have been added 

over time or they have been considered as present from the start.  

Connection criteria: when entering the Internet, new nodes, whose identity depends on the level 

at which the Internet is analyzed and modelled, choose their connections according to specific 

criteria that are a necessary ingredient of any Internet model. However, the rules of the model 

clearly cannot capture the precise decision mechanisms at work in the real Internet. Rather, they 

are cartoon representations of real processes, simple yet general enough that they capture the 

main ingredients of the real system. 

 

 

The first observed property of real world complex networks that is not possible to describe using 

Erdös-Rényi (ER) networks is the distribution of the number of connections (the degree) of the 

network vertices, which is a Poisson function for ER networks whereas in the Internet and other 

real networks it is a power-law with diverging second moment (hence their name of scale-free, 
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SF, networks). The model of Barabási and Albert (hereafter BA model) has shown that SF 

networks can emerge from two simple rules: new nodes are added to the network at a constant 

rate and they preferentially choose, as connection partners, nodes with already a large value of 

their degree (preferential attachment, PA). Although the BA model has been instrumental to go 

beyond ER networks, its outcomes do not satisfy many of the properties of real networks. 

Indeed, as recently shown by Vázquez et al.[3], Caldarelli et al.[4] and Bianconi et al.[5], the 

Internet is characterized by non-trivial correlations at the local level, which the BA model is 

unable  to reproduce. Vázquez et al.[3] have further shown that also Molloy-Reed networks [6] 

(where networks are built by randomly connecting nodes whose degrees are taken from a 

probability distribution similar to the Internet’s one) and the generalized BA model (GBA)[7] 

cannot capture the Internet’s correlations. Only the fitness model of Bianconi and Barabási [8] 

shows correlations qualitatively similar to the observed ones.  

In the BA model new nodes are added at a constant rate and connected with older ones according 

to the preferential attachment rule. In the GBA model existing links are furthermore rewired at a 

constant rate and still in accord with preferential attachment: a node is chosen and one of its 

edges is rewired to another target chosen with a probability proportional to its degree. A different 

rewiring mechanism, inspired by the GBA, has been proposed by Catanzaro et al.[9] and by 

Caldarelli et al.[10]: at every time step, with probability p a node i is chosen and one of its edges 

is rewired to a new target j chosen with a probability which is a function f(|ki-kj|), where ka is the 

degree of node a. Thus rewiring takes place only after that node i has compared the other node’s 

degree with its own.  In [9] the rewiring probability is a decreasing functions of |ki-kj| so that 

nodes of similar degree are more likely to connect to each other. The outcome is a class of 

assortative networks, where high degree nodes are likely to be connected with each other. These 

networks do not reproduce the disassortativity (that is, high degree nodes are unlikely to be 

connected to each other) of the Internet’s correlations at the Autonomous System level, but they 

show that when the degree difference ingredient is taken into account, correlations can naturally 

appear. Disassortativity can be recovered by taking f(|ki-kj|) as a growing function of its 

argument [10]: the largest the difference between the degrees, the higher the rewiring 

probability. Although this result, in light of the preceding one, is not completely unexpected, the 

more interesting result is that as the intrinsic probability of rewiring p˜0.5, almost all the 

correlations measured for the Internet (at the AS level) are recovered to a good quantitative 

measure. This result is not a proof that the model proposed in [10] does capture the real 

mechanisms that forge the Internet. Rather it points out that nodes likely establish and mutate 

connections in time only after having compared some properties of the possible partners with 

their own.  
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Vázquez et al.[3] showed that the Bianconi and Barabási fitness model (BB) [8] is able to 

qualitatively reproduce the correlation trends in the Internet. The BB model proposes a 

modification of the basic PA rule by assigning an intrinsic value (the fitness) to the network 

nodes, in the form of a variable taken from a given probability distribution. A new node entering 

the network chooses its partners with a probability that is proportional to the product of their 

degree and of their fitness.  Yet, no comparison between the fitness of the new node and of the 

older ones determines the choice. Capocci et al.[11] proposed a mechanism where the above 

mentioned fitness modified PA rule takes place only over nodes whose fitness is larger than the 

one of the new entering node, mimicking a choice where only intrinsically more authoritative 

nodes are considered as viable partners. The main result of this paper is that this model is able to 

reproduce, with a good approximation, the values of the correlations measured for the Internet.  

A better quantitative agreement is recovered by a new model introduced by Ángeles Serrano et 

al.[12].  This model introduces a better microscopic description of the nodes of the Internet, by 

taking into account the hierarchical organization in users and Autonomous Systems. Moreover, 

also the dynamics of the vertices and edges is richer: both new users and AS join the network, 

although at different rates, users are allowed to change providers and AS can adapt the number 

of their edges so to satisfy the connectivity demands of their users. Each part of the dynamics 

being characterized by specific rates, partly fitted to the empirical growth rates of the real 

Internet, the network of Autonomous Systems turns out to be scale-free and the power- law 

degree distribution decays with an exponent close to 2, as measured in real data. Starting from 

these premises, Ángeles Serrano and co-workers then refine their model placing AS in two-

dimensional space in such that they cover a fractal set, as measured for the Internet [13]. 

Connections between AS take then place according to the same rules as above, but also taking 

into account the costs of long-distance connections and the bandwidth needs of different AS (that 

is, only AS that need to increase their bandwidth because of an increase of users can link to each 

other). The final result is a model where very many microscopic details close to the ones of the 

Internet have been introduced and that is able to closely reproduce many of its correlation 

properties. Far from being an arrival point, the model of Ángeles Serrano and co-workers shoes 

that more and more details have to be plugged back in the models to obtain detailed a 

reproduction of the real data. At the same time it builds on and gives full credit to older, well 

assessed principles such as growth and preferential attachment, showing how to incrementally 

step up the amount of details. 

The results presented in this section suggest that more than a single network generating 

mechanism can generate networks with local correlations in quantitative agreement with the 

observed ones. Although apparently non-satisfactory, this conclusion also calls for a better 

quantitative characterization of the Internet, and for a deeper understanding of the detailed, 
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engineering, economical and possibly political mechanisms shaping the Internet. Without such 

interdisciplinary understanding we are bound to propose models and unfortunately more than a 

single one is able to reproduce the data available to date. 

 

 

Tangmunarunkit et al. [14] proposed that the topology of the Internet, at least at the AS level, 

could be determined more by intrinsic factors (the size of AS, in turn related to the technology 

and capital of the companies and agencies managing the various AS) than by a growing 

mechanism. For example, AS could link to each other only when their economical and 

technological gain is estimated to be large enough. Also geographical constraints, such as the 

distance between nodes, could affect the choices of connecting partners. These considerations are 

in agreement with the notion outlined above that nodes choose their connection partners only 

after a due comparison of the other nodes’ properties and their own.   

In order to single out the possible outcomes of models driven by the nodes’ intrinsic properties, 

Caldarelli et al. [15] have completely neglected the growth ingredient, focusing rather on static 

networks. A number x (the fitness) drawn from a probability distribution ρ(x) is assigned to 

every node of the network, mimicking in a very simplified way some intrinsic features. Nodes i 

and j are then connected to each other according to a probability pij that can depend on the fitness 

of both nodes, pij=f(x i,x j). Interestingly this model defines a class of models that trivially includes 

the ER model as a special case, pij=p. Various choices of ρ(x) and of f(x i,x j) have been explored 

in [15]. A trivial choice for ρ(x) is an algebraically decreasing function of x, ρ(x)~x-a, and 

pij=f(x i,x j)∝  xixj, which generate networks with a power- law degree distribution characterized by 

the same decaying exponent a. If x represents for example the size of the AS company then an 

algebraically decreasing distribution of x is in agreement with the empirical Zipf law of the sizes 

of companies, giving such a simple model a seemingly realistic interpretation. In [15] it has also 

been shown that power- law degrees distributions can emerge also from less intuitive fitness 

distributions and connections probabilities. In a series of papers it has been further proved that it 

is possible to use these simple network generating mechanisms to create graphs with desired 

degree and local correlation properties [16-18]. Finally a model where fitness are defined as 

arrays of random numbers has been introduced, opening the possibility to capture the intrinsic 

properties at a finer level of detail [19]. 

As previously stated, these models are static, whereas the Internet is intrinsically dynamic. 

Nonetheless the networks generated from these models, just as for the ER, can be allowed to 

grow by the constant rate addition of new nodes, each one characterized by its fitness. Since the 

connection probability does not depend on the time at which nodes have entered the network, 

STATIC MODELS 
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considering the nodes as all present at the beginning or as added one by one does not change the 

final result. 

 

 

Although most of the above models do depend on some non-topological variables (the fitness) 

that can be considered as weights over the network, the term weighted network has been awarded 

only recently to a specific class of models where the non-topological quantities co-evolve with 

the topological ones.  

It has always been widely accepted since the beginning of complex network research, in the late 

‘90s, that networks should be characterized in a detail finer than their bare topology, and edges 

and vertices should carry tags describing their intrinsic, and possibly dynamically changing, 

properties (their weights). Yet, only recently some reliable and large scale weight data, 

specifically about scientific collaborations and airport traffic, have become available [20], which 

explains why the modelling of weighted networks has lagged behind for so long. 

Vespignani and coworkers have recently proposed, in a series of papers [21-23], that the 

evolution of complex networks should also take into account the weights of vertices and edges in 

the connection choice process, and the most straightforward option is to substitute the topology 

based preferential attachment rule with a weight based one: in this way the weights determine the 

topology evolution. As new nodes enter the network they also affect the pre-existing weights, 

which need therefore to be suitably updated. The resulting model defines a dynamics where the 

topology is “slaved” to the weights.  

This new class of models can be solved analytically to find that both the weights and most of the 

topological features of the corresponding networks are distributed according to power-laws, just 

as seen in real data. Still just as in every first modelling attempt, not all correlations turn out 

right. In the Worldwide Airport Network (WAN), for example, the weight of airports, measured 

as the number of passenger seats leaving from them, is an algebraically growing function of their 

topological degree. The basic models for weighted networks [21] are unable to explain such 

properties, and a number of alternatives have already been proposed [24], although none of them 

can yet fully and convincingly capture the precise observations. 

Before exporting the above mentioned models to the Internet, a suitable definition of the weights 

is needed. For scientific collaboration networks weights are the numbers of co-authored papers; 

as mentioned, in the WAN weights are identified as the number of passenger seats along certain 

routes. Internet weights could be naturally chosen as the volumes of data packets travelling along 

the lines. Unfortunately large data sets of weights are still missing for the Internet, also because 

of strong industrial interests in keeping them private. Still, the above models, that already have 
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had a strong impact on the community, can be applied, with possible suitable adaptations, once 

such data will be available. 

 

 

Recent years have seen many different models able to reproduce qualitatively, and sometimes 

quantitatively to a good approximation, the basic topological features of the Internet, inc luding 

some local correlations. Yet, such models are sometimes completely different, so that a seeming 

ambiguity is present. Actually modelling the Internet faces a daunting task: modelling a system 

in a reliable and definitive way needs a thorough understanding of the basic, microscopic, 

mechanisms and degrees of freedom of the system, that can then be cast in a suitable 

mathematical form able to transform such information into a quantitative predictive tool. 

Unfortunately the Internet is far from being well characterized at a microscopic level: the real 

market, technical and political criteria driving connection choices are largely unknown, and 

likely extremely heterogeneous over the network. As such it is at the moment unfeasible to have 

a quantitative predictive and reliable model.  

 

Rather, we are bound to focus to what is measurable and use it as a negative tool, to decide 

which models clearly do not reproduce the observed behaviour of the Internet. Moreover, we 

cannot really single out one of the models that are up to the task against the others.  

Our work for this deliverable as therefore been to try and understand what mechanisms go in the 

right direction, at least as far as a comparison with the available data is concerned. In doing so 

we have uncovered, though very different models, that a central ingredient that ought to be 

included in any future Internet model is the comparison that a node performs of its intrinsic 

properties with the ones of the potential connection partners. This ingredient has been shown to 

lead very easily to the same correlation trends observed in the real data. 

Another problem hindering the direct applicability of more refined models, such as weighted 

network models, is the unavailability of large sets of traffic data, often because they are 

proprietary. Possibly the advent of Internet2, an academically managed high speed network, will 

make such data available to researchers allowing some more finesse in the modelling.   
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